1、数列放缩法常见的数列不等式大多与数列求和或求积有关,基本结构有4种:1.形如i=1naik (k为常数) 2.形如i=1naifn3.形如i=1naik (k为常数) 4.形如i=1naifn例1.求证:12+122+123+12n1nN*变式1求证:12+222+323+n2n2nN*变式2求证:12+1+122+1+12n+11nN*变式3求证:12+1+222+2+n2n+n2nN*例2.求证:113+135+12n-12n+112nN* 变式1求证:113+135+12n-12n+113nN*变式2求证:123+135+1n+12n+1512nN*例3.求证:1+122+132+1+n
2、22nN*变式1求证:1+122+132+1+n274nN*变式2求证:1+122+132+1+n253nN*变式3求证:1+132+152+1(2n-1)254nN*例4.已知数列an,an=2n2n-1nN*求证:i=1naiai-13变式.已知数列an,an=2n2n-1nN*求证:i=1naiai-1259例5. 求证:13-2+132-22+13n-2n32nN*变式.求证:13-2+132-2+13n-21714nN*例6. 求证:2n+1-11+12+13+1n2nnN*变式.求证:1+12+13+1n22n+1-1nN*例7. 求证:1234562n-12n33n+1nN*常见
3、放缩公式:平方型:1nn+11n21nn-1 n2 1n21n2-1=121n-1-1n+1n21n2=44n244n2-1=212n-1-12n+112n-1214nn-1=141n-1-1nn2立方型:1n31nn2-1=12n1n-1-1n+1=121n-1n-1nn+1 n2根式型:2n+1-n=2n+1+n1n=22n2n+n-1=2n-n-11n=2222n222n-1+2n+1=22n+1-2n-11n+2=22n+22n+2+n=n+2-n1nn+1b1证:1an-bn=1an-1a-bban-11an-1a-bba0=1an-1a-b1an-b1an-1a-bab1证:1an-b=1an-1a-ban-11an-1a-ba0=1an-1a-b13n13n-213n-114n14n-314n-114n14n-1134n-1奇偶型:2n-12n2n-12n-12n+12n-12n+1