高中数学必修一1整理3整理2函数的奇偶性课件整理.ppt

上传人(卖家):ziliao2023 文档编号:5710385 上传时间:2023-05-05 格式:PPT 页数:22 大小:3.68MB
下载 相关 举报
高中数学必修一1整理3整理2函数的奇偶性课件整理.ppt_第1页
第1页 / 共22页
高中数学必修一1整理3整理2函数的奇偶性课件整理.ppt_第2页
第2页 / 共22页
高中数学必修一1整理3整理2函数的奇偶性课件整理.ppt_第3页
第3页 / 共22页
高中数学必修一1整理3整理2函数的奇偶性课件整理.ppt_第4页
第4页 / 共22页
高中数学必修一1整理3整理2函数的奇偶性课件整理.ppt_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、1.31.3函数的基本性质(函数的基本性质(2 2)复习:复习:什么叫做轴对称图形什么叫做轴对称图形?什么叫做中心对称图形什么叫做中心对称图形?如果把一个图形沿一条直线折起来如果把一个图形沿一条直线折起来,直线两侧直线两侧部分能够互相重合部分能够互相重合,那么这个图形叫做轴对称图形那么这个图形叫做轴对称图形 如果一个图形绕某一点旋转如果一个图形绕某一点旋转180度,旋转后的度,旋转后的图形能和原图形完全重合,那么这个图形叫做中心图形能和原图形完全重合,那么这个图形叫做中心对称图形对称图形。.精品课件精品课件.2巴黎埃菲尔铁塔巴黎埃菲尔铁塔巴黎圣母院巴黎圣母院北京故宫北京故宫.精品课件精品课件.

2、3xyoxyo 2)(xxfxxf 2)(观察做出的两个函数图象并思考以下问题:观察做出的两个函数图象并思考以下问题:(1)这两个函数图象有什么共同特征吗?)这两个函数图象有什么共同特征吗?(2)相应的两个函数值对应表是如何体现这些特征的?)相应的两个函数值对应表是如何体现这些特征的?x-3-2-1 0 1 2 3 2)(xxf x-3-2 -1 0 1 2 3f(x)=2-|x|2 29 90 0-1-14 41 10 01 14 49 91 12 21 1-1-10 0.精品课件精品课件.4y0 x-xx(-x,f(-x)(x,f(x)对函数对函数f(x)=xf(x)=x2 2,当我们在定

3、义域内任取一对相反数当我们在定义域内任取一对相反数x x和和-x-x时,所对应的函数值什么关系?时,所对应的函数值什么关系?猜想猜想 :f(-x)_ f(x):f(-x)_ f(x)=思考:能用函数解析式给出证思考:能用函数解析式给出证明吗?明吗?观察观察 :f(-1)_ f(1):f(-1)_ f(1)f(-2)_ f(2)f(-2)_ f(2)=f(-3)_ f(3)f(-3)_ f(3)x-3-2-1 0 1 2 3 9 4 1 0 1 4 92)(xxf.精品课件精品课件.5注意:注意:讨论归纳,形成定义讨论归纳,形成定义 一般地,如果对于函数一般地,如果对于函数f(x)的定义域内的定

4、义域内任意任意一个一个x,都有,都有f(x)=f(x),那么函数,那么函数f(x)就就叫做叫做偶函数偶函数偶函数偶函数:函数的图象关于函数的图象关于y轴对轴对称称偶函数偶函数.精品课件精品课件.6观察下面函数图像,看下面函数是偶函数吗?观察下面函数图像,看下面函数是偶函数吗?xy12()(,1f xxx xy1-12()(,11,)f xxx 思考:思考:如果一个函数的图象关于如果一个函数的图象关于y y轴对称,轴对称,它的定义域应该有什么特点?它的定义域应该有什么特点?定义域关于原点对称定义域关于原点对称.精品课件精品课件.7(1)(1)函数函数 与函数与函数 图象有什么共同特征吗?图象有什

5、么共同特征吗?(2)(2)相应的两个函数值对应表是如何体现这些特征的?相应的两个函数值对应表是如何体现这些特征的?xxf)(xxf1)(xxf)(0 xy123-1-2-1123-2-3观察思考观察思考-3-2-1 02xy-1-21233-31xxf1)(x-3-2-1 0 1 2 3 xxf)(x-3-2-1 0 1 2 3 xxf1)(-3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3-1/3-1/3 -1/2-1/2 -1-1 /1 1 1/21/2 1/31/3.精品课件精品课件.8-xx对函数对函数 ,当我们在定义域内任取一对相反数,当我们在定义域内任取一对相反数x

6、x和和-x x时,所对应的函数值什么关系?时,所对应的函数值什么关系?猜想猜想 :f(-x)_-f(x):f(-x)_-f(x)=思考:能用函数解析式给出证思考:能用函数解析式给出证明吗?明吗?观察观察 :f(-1)_-f(1):f(-1)_-f(1)f(-2)_-f(2)f(-2)_-f(2)=f(-3)_-f(3)f(-3)_-f(3)xxf)(0 xy12-1-2-112-2xxf)(x-3-2-1 0 1 2 3 xxf)(-3 -2 -1 0 1 2 3-3 -2 -1 0 1 2 3f(x)f(x)f(-x)f(-x).精品课件精品课件.9图象关于原点对称图象关于原点对称奇函数奇函

7、数 一般地,如果对于函数一般地,如果对于函数f(x)的定义域内的定义域内任意任意一个一个x,都有,都有f(x)=f(x),那么函数,那么函数f(x)就叫做就叫做奇奇函数函数讨论归纳,形成定义讨论归纳,形成定义奇函数:奇函数:偶函数:偶函数:一般地,如果对于函数一般地,如果对于函数f(x)的定义域内的定义域内任意任意一一个个x,都有,都有f(x)=f(x),那么函数,那么函数f(x)就叫做就叫做偶函数偶函数注意:注意:图象关于图象关于y轴对称轴对称偶函数偶函数定义域关于原点对称定义域关于原点对称.精品课件精品课件.10-23yox3,2,)(xxxf观察下面函数图像,看是奇函数吗?观察下面函数图

8、像,看是奇函数吗?思考:思考:如果一个函数的图象关于原点对称,如果一个函数的图象关于原点对称,它的定义域应该有什么特点?它的定义域应该有什么特点?定义域关于原点对称定义域关于原点对称.yox-2-22 22,2,)(xxxf2 2-3-3.精品课件精品课件.11判断或证明函数奇偶性的基本步骤:判断或证明函数奇偶性的基本步骤:注意:注意:若可以作出函数图象的,直接观察图象是否若可以作出函数图象的,直接观察图象是否关于关于y y轴对称或者关于原点对称。轴对称或者关于原点对称。一看一看看定义域看定义域是否关于原点对称是否关于原点对称二找二找找关系找关系f(x)与与f(-x)三判断三判断下结论下结论奇

9、或偶奇或偶.精品课件精品课件.12将下面的函数图像分成两类将下面的函数图像分成两类Oxy0 xy0 xy0 xy0 xy0 xy奇函数奇函数偶函数偶函数.精品课件精品课件.13452(1)()(2)()11(3)()(4)()f xxf xxf xxf xxx3,|0 x x 1解:()对于函数f(x)=x+其定义域为x因为对定义域内的每一个x,都有11 f(-x)=-x+=-(x+)=-f(x)-xx 所以,函数f(x)为奇函数 22221(4)(),|0,11()()()1()f xx xxxfxf xxxf xx解:对于函数其定义域为因为对于定义域内的每一个都有所以,函数为偶函数.讲练结

10、合,巩固新知讲练结合,巩固新知.精品课件精品课件.14判断下面函数的奇偶性判断下面函数的奇偶性(1)f(x)=x (2)f(x)=0练习练习解解:定义域为定义域为 0,+)定义域不关于定义域不关于原点对称原点对称f(x)为非奇非偶函数为非奇非偶函数解解:定义域为定义域为R f(-x)=0=f(x)又又 f(-x)=0=-f(x)f(x)为既是奇函数又是偶函数为既是奇函数又是偶函数.精品课件精品课件.15奇函数奇函数偶函数偶函数既是奇函数又是偶函数既是奇函数又是偶函数非奇非偶函数非奇非偶函数 根据奇偶性根据奇偶性,函数可划分为四类函数可划分为四类:总结:总结:.精品课件精品课件.16奇偶性奇函数

11、偶函数定义设函数y=f(x)的定义域为D,对于任意的x,都有f(-x)=-f(x)f(-x)=f(x)图像性质关于原点对称关于y轴对称判断步骤定义域是否关于原点对称.f(-x)=-f(x)?f(-x)=f(x)?xoy-aaxoy-aa6.课时小结,知识建构课时小结,知识建构.精品课件精品课件.17 判断下列函数的奇偶性判断下列函数的奇偶性53)()1(xxxxf(2)1)(xxf2)()3(xf4,2(,)(2xxxf(4)7、当堂达标、当堂达标.精品课件精品课件.18例例2、已知函数、已知函数y=f(x)是偶函数,它在是偶函数,它在y轴轴右边的图象如图,画出右边的图象如图,画出y=f(x)

12、在在 y轴左边轴左边的图象的图象.Oyx.精品课件精品课件.191、课本、课本36页页1题题,2题题2 2、学习与评价、学习与评价28-3028-30页页3.23.2节练习节练习作业作业.精品课件精品课件.20对奇函数、偶函数定义的说明对奇函数、偶函数定义的说明:(1 1)函数若是奇函数或者偶函数:定义域关于原点对称)函数若是奇函数或者偶函数:定义域关于原点对称。对于定义域内的任意一个对于定义域内的任意一个x x,则,则x x也一定是定义域内的一个也一定是定义域内的一个自变量自变量(2 2)如果一个函数)如果一个函数f(x)f(x)是奇函数或偶函数是奇函数或偶函数,那么我们就说函那么我们就说函数数f(x)f(x)具有奇偶性具有奇偶性.既不是奇函数也不是偶函数的函数称为既不是奇函数也不是偶函数的函数称为非非奇非偶奇非偶函数函数.xoa,b-b,-a强化定义,深化内涵强化定义,深化内涵(3)奇、偶函数定义的逆命题也成立,)奇、偶函数定义的逆命题也成立,即:若函数即:若函数f(x)为奇函数为奇函数,则则f(-x)=f(x)成立。成立。若函数若函数f(x)为偶函数为偶函数,则则f(-x)=f(x)成立成立。.精品课件精品课件.21.精品课件精品课件.22

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 其他
版权提示 | 免责声明

1,本文(高中数学必修一1整理3整理2函数的奇偶性课件整理.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|