数列通项公式求法大全(配练习测试及参考答案)(DOC 6页).doc

上传人(卖家):2023DOC 文档编号:5746506 上传时间:2023-05-06 格式:DOC 页数:7 大小:390KB
下载 相关 举报
数列通项公式求法大全(配练习测试及参考答案)(DOC 6页).doc_第1页
第1页 / 共7页
数列通项公式求法大全(配练习测试及参考答案)(DOC 6页).doc_第2页
第2页 / 共7页
数列通项公式求法大全(配练习测试及参考答案)(DOC 6页).doc_第3页
第3页 / 共7页
数列通项公式求法大全(配练习测试及参考答案)(DOC 6页).doc_第4页
第4页 / 共7页
数列通项公式求法大全(配练习测试及参考答案)(DOC 6页).doc_第5页
第5页 / 共7页
点击查看更多>>
资源描述

1、精心整理数列通项公式的十种求法一、公式法二、累加法例1已知数列满足,求数列的通项公式。例2已知数列满足,求数列的通项公式。()三、累乘法例3已知数列满足,求数列的通项公式。()评注:本题解题的关键是把递推关系转化为,进而求出,即得数列的通项公式。例4已知数列满足,求的通项公式。()评注:本题解题的关键是把递推关系式转化为,进而求出,从而可得当的表达式,最后再求出数列的通项公式。四、待定系数法(其中p,q均为常数)。例5已知数列满足,求数列的通项公式。()评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。例6已知数列满足,求数列的

2、通项公式。()评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求数列的通项公式。例7已知数列满足,求数列的通项公式。()评注:本题解题的关键是把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。五、递推公式为与的关系式(或)解法:这种类型一般利用例8已知数列前n项和.(1)求与的关系;(2)求通项公式.六例9已知数列满足,求数列的通项公式。解:两边除以,得,则,故因此,则评注:本题解题的关键是把递推关系式转化为,进而求出,即得数列的通项公式,最后再求数列的通项公式。七、对数变换法(当通项公式中含幂指数时适

3、用)例10已知数列满足,求数列的通项公式。解:因为,所以。在式两边取常用对数得设将式代入式,得,两边消去并整理,得,则,故代入式,得由及式,得,则,所以数列是以为首项,以5为公比的等比数列,则,因此则。评注:本题解题的关键是通过对数变换把递推关系式转化为,从而可知数列是等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。八、迭代法例11已知数列满足,求数列的通项公式。解:因为,所以又,所以数列的通项公式为。评注:本题还可综合利用累乘法和对数变换法求数列的通项公式。即先将等式两边取常用对数得,即,再由累乘法可推知,从而。九、数学归纳法例12已知数列满足,求数列的通项公式。解:由及,得由此可猜测,往下用数学归纳法证明这个结论。(1)当时,所以等式成立。(2)假设当时等式成立,即,则当时,由此可知,当时等式也成立。根据(1),(2)可知,等式对任何都成立。评注:本题解题的关键是通过首项和递推关系式先求出数列的前n项,进而猜出数列的通项公式,最后再用数学归纳法加以证明。十、换元法例13已知数列满足,求数列的通项公式。解:令,则故,代入得即因为,故则,即,可化为,所以是以为首项,以为公比的等比数列,因此,则,即,得。评注:本题解题的关键是通过将的换元为,使得所给递推关系式转化形式,从而可知数列为等比数列,进而求出数列的通项公式,最后再求出数列的通项公式。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(数列通项公式求法大全(配练习测试及参考答案)(DOC 6页).doc)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|