指数函数对数函数专练习题(含标准答案)(DOC 11页).docx

上传人(卖家):2023DOC 文档编号:5752217 上传时间:2023-05-06 格式:DOCX 页数:11 大小:187.78KB
下载 相关 举报
指数函数对数函数专练习题(含标准答案)(DOC 11页).docx_第1页
第1页 / 共11页
指数函数对数函数专练习题(含标准答案)(DOC 11页).docx_第2页
第2页 / 共11页
指数函数对数函数专练习题(含标准答案)(DOC 11页).docx_第3页
第3页 / 共11页
指数函数对数函数专练习题(含标准答案)(DOC 11页).docx_第4页
第4页 / 共11页
指数函数对数函数专练习题(含标准答案)(DOC 11页).docx_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、指数函数及其性质1. 指数函数概念一般地,函数叫做指数函数, 其中是自变量, 函数的定义域为. 2.指数函数函数性质:函数名称指数函数定义函数且叫做指数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是减函数函数值的变化情况变化对图在第一象限内,从逆时针方向看图象,逐渐增大;在第二象限内,从逆时针方向象的影响看图象,逐渐减小 .1/11对数函数及其性质1. 对数函数定义一般地,函数叫做对数函数,其中是自变量,函数的定义域. 2. 对数函数性质:函数名称对数函数定义函数且叫做对数函数图象定义域值域过定点图象过定点,即当时,.奇偶性非奇非偶单调性在上是增函数在上是

2、减函数函数值的变化情况变化对图在第一象限内,从顺时针方向看图象,逐渐增大;在第四象限内,从顺时针方向象的影响看图象,逐渐减小 .2/11指数函数习题一、选择题1定义运算 a?ba a b,则函数 f ( x) 1?2x 的图象大致为 ()b ab2函数 f ( x) x2bx c 满足 f (1 x) f (1 x) 且 f (0) 3,则 f ( bx) 与 f ( cx) 的大小关系是()xxA f ( b ) f ( c )xxB f ( b ) f ( c )xxC f ( b ) f ( c )D大小关系随x 的不同而不同3函数 y |2 x 1| 在区间 ( k 1, k 1) 内

3、不单调,则k 的取值范围是 ()A( 1, )B ( , 1)C( 1,1) D (0,2)4设函数f(x) ln ( x1)(2 x) 的定义域是 ,函数() lg(x 2x1) 的定义域是,Ag xaB若 ?,则正数a的取值范围 ()ABA a3 B a 3C a5D a 53 a x3, x 7,*5已知函数f ( x) ax 6, x7.若数列 an 满足 an f ( n)( n N),且 an 是递增数列,则实数a 的取值范围是 ()A 9,3) B ( 9,3)44C (2,3) D (1,3)2x16已知 a0 且 a 1,f( x) x a ,当 x ( 1,1) 时,均有

4、f ( x)0,且 a 1) 在 1,2 上的最大值比最小值大2,则 a 的值是 _8若曲线 | y| 2x 1 与直线 yb 没有公共点,则 b 的取值范围是 _| x|的定义域为9 (2011 滨州模拟 ) 定义:区间 x1,x2 ( x10 且 a 1) 在 x 1,1上的最大值为14,求a 的值x, f ( a 2) 18, g( x) 3axx12已知函数 f ( x) 34的定义域为 0,1(1) 求 a 的值;(2) 若函数 g( x) 在区间 0,1 上是单调递减函数,求实数的取值范围1. 解读: 由 a?ba a bx2xx 0 ,得 f ( x) 1?2x0 .b a b1

5、答案: A2.解读: f (1 x) f (1 x) ,f ( x) 的对称轴为直线x1,由此得 b 2.又 f (0) 3,c 3. f ( x) 在 ( , 1) 上递减,在 (1 , ) 上递增x 2x 1, (3 x) (2 x ) 若 x 0,则 3ff若 x0,则 3x2x f (2 x) f (3 x) f (2 x ) 答案: A3. 解读: 由于函数 y |2 x1| 在 ( ,0) 内单调递减,在 (0 , ) 内单调递增,而函数在区间 ( k 1, k 1) 内不单调,所以有k10k 1,解得 1k1xx1在(1,2)上恒成立,即,a 2且 a2,由 A? B知 a 2x

6、x 10在 (1,2)上恒成立,令xx 1,则 u( x)xlna 2xln20 ,所以函数a2u( x) a 2 a4/11u( x) 在 (1,2)上单调递增,则u( x) u(1) a 3,即 a 3.答案: B*f ( n) 为增函数,5. 解读: 数列 a 满足 a f ( n)( nN ) ,则函数nn1a86 a) 7 3,所以 3 a0,解得 2a(3a8 6 3 a 7 3答案: C12x 121 xx216. 解读: f ( x) 2? x a 2? x 21 时,必有 a 2,即 1a 2,1 1当 0a1 时,必有 a 2,即 2a1,1综上, 2 a1 或 11 时,

7、 y a 在 1,2上单调递增,故a a2,得 a 2. 当 0a0,则yt 2t1 (t1) 2,其对称轴为t 1. 该二次函数tt在 1, ) 上是增函数x12若 a1,x 1,1 ,t a a,a ,故当 t a,即 x1 时, ymax a 2a 1 14,解得a 3( a 5 舍去 ) 若 0a1,x 1,1 ,x1 ,故当t1 a,即x1时,ata a6/1112ymax ( a 1) 2 14.11a 3或 5( 舍去 ) 1综上可得 a 3 或 3.12. 解: 法一: (1) 由已知得 3a 2 18? 3a 2? alog 32.(2) 此时 g( x) 2x 4x,设 0

8、 x10 恒成立,即222,所以实数 的取值范围是 2.法二: (1) 同法一(2) 此时 g( x) 2x 4x,因为() 在区间 0,1 上是单调减函数,g xxx所以有 g( x) ln2 2 ln4 4 ln2 2(2x)2 2x 0 成立x u1,2 ,上式成立等价于2恒成立设 22u u0因为 u1,2 ,只需 2u 恒成立,所以实数 的取值范围是 2.对数与对数函数同步练习一、选择题1、已知 3a2 ,那么 log3 82log 3 6 用 a 表示是()A 、 a 2B、 5a2C、 3a(1 a)2D、 3a a27/112、 2log a (M2N )log aMlog a

9、 N ,则 M 的值为()A、 1 B、4 C、1ND、4或1413 、 已 知 x2y 21, x0, y0, 且 loga (1x)m,log axn,则 log a y 等 于1()A、 m n B、 m n C、 1 m n D、 1 m n224、如果方程 lg 2 x(lg5lg 7)lgx lg5lg 70 的两根是,,则的值是()A、 lg5lg7B、 lg35 C、35D、 13515、已知 log 7log 3 (log 2 x)0,那么 x 2 等于()A、1B、 1 C、 12D、 13323236、函数 ylg21的图像关于()1xA、 x 轴对称B、 y 轴对称C、

10、原点对称D、直线 yx 对称7、函数 ylog(2 x 1)3x2 的定义域是()A、 2,11,B、 1,11,32C、 2,D、 1,328、函数 ylog 1 (x26x17) 的值域是()2A、 RB、 8,C、,3 D、3,9、若 log m 9log n 90 ,那么 m, n 满足的条件是()A、 m n 1 B、 nm 1C、 0 n m 1D、 0 m n 121,则 a 的取值范围是()10、 log a3A、 0,21,B、 2,C、 2,1D、 0,22 ,333338/1111、下列函数中,在0,2 上为增函数的是()A、 ylog 1 ( x1) B、 ylog 2

11、x212C、 ylog21 D、 ylog 1 ( x24x5)x212、已知g( x)loga x+1 (a0且 a在上有g( x)0,则 f ( x) a x 1是1)10,()A、在,0上是增加的 B、在,0 上是减少的C、在,1上是增加的 D、在,0上是减少的二、填空题13、若 log a 2m,log a 3n, a2 m n。14、函数 ylog ( x-1) (3- x) 的定义域是。15、 lg 25 lg 2 lg 50(lg 2)2。16、函数 f (x)lgx21x是(奇、偶)函数。三、解答题:(本题共 3 小题,共 36 分,解答应写出文字说明,证明过程或演算步骤. )

12、17、已知函数 f ( x)10 x10 x,判断 f (x) 的奇偶性和单调性。10 x10 x18、已知函数 f ( x23)lgx2x2,6(1)求 f ( x) 的定义域;(2)判断 f (x) 的奇偶性。、已知函数mx28x n 的定义域为 R ,值域为 0,2 ,求 m, n 的值。19f ( x) log 321x9/11对数与对数函数同步练习参考答案一、选择题题号123456789101112答案ABDDCCACCADC二、填空题3x013、12 14 、 x 1x 3且x2 由 x10解得 1x 3且 x2 15、2x1116、奇,xR且 f (x) lg(x21x)lg1l

13、g(x21 x)f (x),f (x)x 21x为奇函数。三、解答题17、(1)f ( x)10x10 x10 2x1, x R,10x10 x10 2x1f (10 x10 x102x1f (x), xRx)x10 x102x110 f (x) 是奇函数102x1(,) ,且 x1x2 ,( 2) f (x)2x, x R.设 x1, x2101则 f (x1)f (x2 )102 x11102 x212(102x1102 x2 )1)0, (10 2x1102 x2 )102 x11102 x21(102 x11)(102 x2 f (x) 为增函数。18、(1) f ( x2x2x233x 3x 203)lg x26lgx233, f ( x)lgx 3,又由x26得 x233 , f (x) 的定义域为 3,。( 2) f ( x) 的定义域不关于原点对称,f (x) 为非奇非偶函数。19、由 f (x) log 3mx28xn ,得 3ymx28xn3ymx2 8 x 3 yn02x21,即x1 x R,644(3y)(3 yn)0,即2 y(m n) 3ymn 16 0m310/11由 0 y 2 ,得 13 y 9,由根与系数的关系得mn19 ,解得 m n 5 。mn 161 911/11

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(指数函数对数函数专练习题(含标准答案)(DOC 11页).docx)为本站会员(2023DOC)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|