中考数学专题复习课件:7证明线段相等的基本思路.ppt

上传人(卖家):ziliao2023 文档编号:5786292 上传时间:2023-05-09 格式:PPT 页数:14 大小:3.04MB
下载 相关 举报
中考数学专题复习课件:7证明线段相等的基本思路.ppt_第1页
第1页 / 共14页
中考数学专题复习课件:7证明线段相等的基本思路.ppt_第2页
第2页 / 共14页
中考数学专题复习课件:7证明线段相等的基本思路.ppt_第3页
第3页 / 共14页
中考数学专题复习课件:7证明线段相等的基本思路.ppt_第4页
第4页 / 共14页
中考数学专题复习课件:7证明线段相等的基本思路.ppt_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、 证明线段相等的基本思路 我们已经学习过的图形及其性质中,有哪些定理可以用来证明两条线我们已经学习过的图形及其性质中,有哪些定理可以用来证明两条线段相等呢?如何根据题目条件选择合适的方法证明线段相等是本节课研究段相等呢?如何根据题目条件选择合适的方法证明线段相等是本节课研究的重点的重点,欢迎学习本节课欢迎学习本节课.类型一:已知“边的关系”或“边角关系”用全等如图,如图,ABAD,BCCD,P为为AC上一点,求证:上一点,求证:PBPD证明:证明:ABAD,BCCD,ACACABCADC12再结合再结合ABAD,APAPAPBAPDPBPD如图,如图,ABAE,BCDE,AFCD于于F,BE,

2、求证:,求证:CFFD证明证明:连接:连接AC、AD在在ABC和和AED中中AB=AEBC=DEB=EABCAEDACAD又又AFCDCFFD(三线合一三线合一)类型二:已知角度、平行用“等角对等边”如图,在如图,在ABC中,中,BO平分平分ABC,CO平分平分ACB,MN经过点经过点O,且,且MNBC,若若AB12,AC18,则,则AMN的周长为的周长为_.30如图,如图,CAE是是ABC的一个外角,的一个外角,12,ADBC,求证:,求证:ABAC.证明:证明:ADBC1C,2B又又12BCABAC证明线段相等通常有如下思路:证明线段相等通常有如下思路:利用利用“全等三角形对应边相等全等三

3、角形对应边相等”证明;证明;利用利用“等角对等边等角对等边”证明;证明;证明线段相等的基本思路证明线段相等除用全等三角形和等腰三角形的性质证明外,我们还可以选证明线段相等除用全等三角形和等腰三角形的性质证明外,我们还可以选择用角平分线的性质和线段垂直平分线的性质予以证明择用角平分线的性质和线段垂直平分线的性质予以证明.类型三:已知角平分线、垂直或垂直平分用相应的性质如图,在四边形如图,在四边形OACB中,中,OC是是AOB的平分线,的平分线,CDOA于于D,AOBC=180,求证:,求证:OAOB=2OD.如图,在四边形如图,在四边形OACB中,中,OC是是AOB的平分线,的平分线,CDOA于

4、于D,AOBC=180,求证:,求证:OAOB=2OD.证明:过点证明:过点C作作CEOB于点于点EOC平分平分AOB,CDOACE=CDA218012=1801=A而而BEC=CDA=90EBCDACBE=DA另由另由OC=OC,EOC=DOCOEC=ODC得得OECODCOE=ODOAOBODDAOB=ODBEOB=ODOE=2OD如图,如图,点点F为为ABC的的AC边上一点边上一点,D是是BC的中点的中点DEDF,交,交AB于点于点E,连结连结EF.请你判断请你判断BECF与与EF的大小关系,并说明理由的大小关系,并说明理由.证明:证明:延长延长FD至至G,使,使DG=DF,连接连接BG

5、、EGDBDC,CDF=BDGCDFBDGBGCFEDDF,DF=DG EG=EF在在BEG中中BEBGEGBECFEF证明线段相等通常有如下思路:证明线段相等通常有如下思路:利用利用“全等三角形对应边相等全等三角形对应边相等”证明;证明;利用利用“等角对等边等角对等边”证明;证明;利用利用“角平分线上的点到角两边的距离相等角平分线上的点到角两边的距离相等”证明;证明;利用利用“线段垂直平分线上的点到线段两个端点的距离相等线段垂直平分线上的点到线段两个端点的距离相等”证明证明.关于文化多样性,中国古代先贤早就提出了“和而不同”的思想。今天,在尊重文化多样性的基础上推动文化交流互鉴,既是发展本民

6、族文化的内在要求,也是实现世界文化繁荣的必然选择。早在人类文化发展的上古时期,文化的发展就不是一个模式,而是形成多个文化体系,呈现多样形态。此后,不同文化并不是孤立地、互不联系地发展,而是在相互交流、对话、学习、碰撞中前行,逐渐形成“你中有我、我中有你”的格局。而不同文明的接触,常常成为人类进步的里程碑:希腊学习埃及,罗马学习希腊,阿拉伯学习罗马帝国,中世纪欧洲学习阿拉伯,文艺复兴时期的欧洲又学习东罗马帝国。欧洲文化的发展状况是这样,东亚也是如此:日本明治维新之前,日本学习借鉴中国;明治维新之后,中国通过日本学习世界。中国从印度引入佛教,之后中国佛教影响东亚、东南亚大片区域。人类文化发展史表明

7、,一种本土文化、民族文化或地域文化与外来文化进行交流互鉴时,只要坚持科学方法,保持自己文化的特性,就能不断吸收改造外来文化并使其成为自己的一部分。这种处于变化发展中的文化,其民族性往往更为鲜明突出,更符合民族文化发展的需要。以中国绘画为例,“六朝以来,就大受印度美术的影响”。内容与形式发生较大人类文化发展史表明,一种本土文化、民族文化或地域文化与外来文化进行交流互鉴时,只要坚持科学方法,保持自己文化的特性,就能不断吸收改造外来文化并使其成为自己的一部分。这种处于变化发展中的文化,其民族性往往更为鲜明突出,更符合民族文化发展的需要。以中国绘画为例,“六朝以来,就大受印度美术的影响”。内容与形式发生较大人类文化发展史表明,一种本土文化、民族文化或地域文化与外来文化进行交流互鉴时,只要坚持科学方法,保持自己文化的特性,就能不断吸收改造外来文化并使其成为自己的一部分。这种处于变化发展中的文化,其民族性往往更为鲜明突出,更符合民族文化发展的需要。以中国绘画为例,“六朝以来,就大受印度美术的影响”。内容与形式发生较大

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 中考复习 > 二轮专题
版权提示 | 免责声明

1,本文(中考数学专题复习课件:7证明线段相等的基本思路.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|