1、2021年高三5月查缺补漏题 数学文 Word版含答案1.函数图象的两条相邻对称轴间的距离为A. B. C. D. 2.下列函数中,在其定义域内既是奇函数又是减函数的是ABCD3.若向量满足,且,则向量的夹角为A30 B45 C60D904.已知函数,则,的大小关系为A BC D5.某空间几何体三视图如右图所示,则该几何体的表面积为_,体积为_. 6.设、是不同的直线,、是不同的平面,有以下四个命题: 若 则 若,则 若,则 若,则其中所有真命题的序号是_7.设不等式组表示的平面区域为D,若直线上存在区域D上的点,则的取值范围是_. 8.已知不等式组所表示的平面区域为,则的面积是_;设点,当最
2、小时,点坐标为_9.设等比数列的公比为,前项和为则“”是“”的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件10.设函数在区间上有两个零点,则的取值范围是( )A.B.C.D.11.已知椭圆的离心率为过椭圆的一个顶点和一个焦点,圆心在此椭圆上,则满足条件的点的个数是( )A.B.C.D.12.如果直线总不经过点,其中,那么的取值范围是_.13.如图所示,正方体的棱长为1, E、F 分别是棱、的中点,过直线E、F的平面分别与棱、交于M、N,设BM= x,给出以下四个命题:平面MENF平面;四边形MENF周长,是单调函数;四边形MENF面积,是单调函数;四棱锥的
3、体积为常函数;以上命题中正确命题的个数( )A1 B2 C3 D414.直线与抛物线相切于点. 若的横坐标为整数,那么的最小值为 15.已知数列的前项和 若是中的最大值,则实数的取值范围是_.解答题部分:1. 已知函数(I)求的最小正周期和值域;(II)在中,角所对的边分别是,若且,试判断的形状.2.如图,在直角坐标系中,点是单位圆上的动点,过点作轴的垂线与射线交于点,与轴交于点记,且()若,求; ()求面积的最大值. 3. 已知函数,且求的值.()求函数在区间 上的最大和最小值.4. 已知数列的通项公式为,其前项和为.(I) 若,求的值;() 若且,求的取值范围.5.数列的各项都是正数,前项
4、和为,且对任意,都有. ()求的值; ()求证:; ()求数列的通项公式. 6. 已知正三角形与平行四边形所在的平面互相垂直.又,且,点分别为的中点.求证: 7. 如图,四棱锥中,底面,底面为梯形,.,点在棱上,且()求证:平面平面;()求证:平面8. 设、是函数的两个极值点.(I)若,求函数的解析式;()若,求的最大值. 9. 已知函数.()若,求函数的极值;()求函数的单调区间.10. 已知椭圆:的左、右焦点分别为,且经过点,又是椭圆上的两点. ()求椭圆的方程; ()若直线过,且,求.11. 已知椭圆的离心率为,短轴长为()求椭圆的方程;()已知点,过原点的直线与椭圆交于两点,直线交椭圆
5、于点,求面积的最大值xx年最后阶段高三数学复习参考资料 文 科 xx年5月题号12345答案BCCA,题号678910答案CC题号1112131415答案CB1解答题部分:. 解: 所以 由,有, 所以 因为,所以,即. 由余弦定理及,所以. 所以 所以.所以为等边三角形. 2. 解:依题意,所以 因为,且,所以 所以 ()由三角函数定义,得,从而 所以 因为,所以当时,等号成立, 所以面积的最大值为 . 3.解:() ()因为设因为所以所以有由二次函数的性质知道,的对称轴为 所以当 ,即,时,函数取得最小值当,即,时,函数取得最大小值4.解:(I)因为所以所以是公差为的等差数列,又,所以,解
6、得,所以()因为且所以,得到5.证明:(I)在已知式中,当时, 因为,所以, 所以,解得 () 当时, 当时, 得, 因为 所以, 即 因为适合上式 所以(nN+) ()由(I)知 当时, 得 因为 ,所以所以数列是等差数列,首项为1,公差为1,可得6. 证明:因为在正三角形中,为中点,所以又平面平面,且平面平面,所以平面,所以在中,所以可以得到,所以,即,又 所以平面,所以7.证明:()因为底面ABCD,所以又,所以平面 又平面,所以平面平面 ()因为底面,所以 又,且 所以平面,所以 在梯形中,由,得,所以又,故为等腰直角三角形所以连接,交于点,则 在中,所以 又平面,平面,所以平面 8.
7、解(I)因为,所以 依题意有,所以. 解得,所以. . ()因为,依题意,是方程的两个根,且, 所以. 所以,所以. 因为,所以. 设,则. 由得,由得. 即函数在区间上是增函数,在区间上是减函数, 所以当时,有极大值为96,所以在上的最大值是96, 所以的最大值为. 9. 解:()因为 ,所以 ,. 令,即. 因为 函数的定义域为,所以 . 因为 当时,;当时,所以 函数在时取得极小值6. ()由题意可得 .由于函数的定义域为,所以 当时,令,解得或;令,解得;当时,令,解得;令,解得; 当时,令,解得或;令,解得;当时,. 所以 当时,函数的单调递增区间是,单调递减区间是;当时,函数的单调
8、递增区间是,单调递减区间是;当时,函数的单调递增区间是,单调递减区间是; 当时,函数的单调递增区间是 10. 解:()因为 点在椭圆:上,所以 . 所以 . 所以 椭圆的方程为. ()因为 . 设,得,.因为直线过,且,所以 .所以 . 所以 所以 .所以 .所以 . 所以 .11. 解:()椭圆的方程为()设直线的方程为,代入椭圆方程得,由,得,所以 ,因为是的中点,所以 由 ,设,则,当且仅当时等号成立,此时面积取最大值,最大值为33809 8411 萑35873 8C21 谡39083 98AB 颫24879 612F 愯28005 6D65 浥)m-;39529 9A69 驩28898 70E2 烢27920 6D10 洐38721 9741 靁38274 9582 閂