1、2020 届届高三数学高三数学考前考前冲刺冲刺适应性适应性模拟卷模拟卷(理科)试题(理科)试题第第 1 页(共页(共 5 页) 页) 准考证号准考证号_姓名姓名_ (在此卷上答题无效) 保密保密启用前启用前 泉州中学数学学科联盟泉州中学数学学科联盟 2020 届届高三高三考前考前冲刺冲刺适应性适应性模拟卷模拟卷 理理 科科 数数 学学 本试卷共本试卷共 23 题,满分题,满分 150 分,共分,共 5 页页考试用时考试用时 120 分钟分钟 注意事项:注意事项: 1答题前,考生先将自己的姓名、准考证号填写在答题卡上 2考生作答时,将答案答在答题卡上请按照题号在各题的答题区域(黑色线框)内作答,
2、超出答 题区域书写的答案无效在草稿纸、试题卷上答题无效 3选择题答案使用 2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其它答案标号;非选择题答 案使用5 . 0毫米的黑色中性(签字)笔或碳素笔书写,字体工整、笔迹清楚 4保持答题卡卡面清洁,不折叠、不破损考试结束后,将本试卷和答题卡一并交回 一一、选择题选择题:本大题共本大题共 1212 小题小题,每小题每小题 5 5 分分,共共 6060 分分在每小题给出的四个选项中在每小题给出的四个选项中,只有一项是符合题只有一项是符合题 目要求的目要求的 1已知(i) iiab ,其中, a b是实数,i是虚数单位,则复平面内izab 对应的点在 A
3、第一象限B第二象限C第三象限D第四象限 2已知集合 2 |0Ax xx,1,2,3B ,则下列结论正确的是 A2,3 AB BABB C |1ABx x DABA 3记等差数列 n a的前n项和为 n S若 63 227aa, 54 229aa,则 5 S A45B35C25D15 42019 年,泉州市区的房价依旧是市民关心的话题总体来说, 二手房房价有所下降;相比二手房而言,新房市场依然强劲, 价格持续升高已知销售人员主要靠售房提成领取工资现 统计泉州市某新房销售人员2019年一年的工资情况的结果如 图所示,则下列说法正确的是 A2019 年该销售人员月工资的中位数为8.65 B2019
4、年该销售人员 8 月份的工资增长率最高 2020 届届高三数学高三数学考前考前冲刺冲刺适应性适应性模拟卷模拟卷(理科)试题(理科)试题第第 2 页(共页(共 5 页) 页) C2019 年该销售人员第一季度月工资的方差小于第二季度月工资的方差 D2019 年该销售人员第一季度月工资的平均数大于第四季度月工资的平均数 5若0cba,则 A bccb a ba bB2lnlnlnbac C cc ab ab Dloglog ab cc 6执行如图所示的程序框图若输入 1 2 n ,则输出的n的值为 A 3 2 B2 C 5 2 D3 7定义在R上的函数( )f x满足()( )fxf x ,且在0
5、,上单调递增若 32f,则不等式 6 ( )f x x 的解集为 A3,0B3,C3,00,3D3,03, 8直线2yx交椭圆 22 1 4 xy m 于,A B两点,若3 2AB ,则m的值为 A16B12C2 3D3 9法国的数学家费马(PierredeFermat)曾在一本数学书的空白处写下一个看起来很简单的猜想:当整数 2n 时,找不到满足 nnn xyz的正整数解该定理史称费马最后定理,也被称为费马大定理费 马只是留下这个叙述并且说他已经发现这个定理的证明妙法,只是书页的空白处不够无法写下费马 也因此为数学界留下了一个千古的难题,历经数代数学家们的努力,这个难题直到 1993 年才由
6、我国 的数学家毛桂成完美解决,最终证明了费马大定理的正确性现任取, , ,1,2,3,4,5x y z n,则等式 nnn xyz成立的概率为() A 1 12 B 12 625 C 14 625 D 7 625 10已知函数( )sin3cosf xxx(0),若 (0)( )0 3 ff,且( )f x在),( 3 0 至少有6个极 值点,则的最小值为 A18B19 C20D21 11 已知双曲线E的左、 右焦点分别为 12 ,F F,O为坐标原点 若点P在E上, 2OPOQ , 22 PFOF, 2020 届届高三数学高三数学考前考前冲刺冲刺适应性适应性模拟卷模拟卷(理科)试题(理科)试
7、题第第 3 页(共页(共 5 页) 页) 11 3 2 QFOF ,则E的离心率为 A2B2C5D31 12已知函数( )(1)lnf xxxtx,方程( )f xt有 3 个不同的解 123 ,x x x,现给出下述结论: 2t ; 123 1x x x ;( )f x的极小值 0 ()2f x 则其中正确的结论的有 ABC D 二、填空题:本大题共二、填空题:本大题共 4 4 小题,每小题小题,每小题 5 5 分,共分,共 2020 分将答案填在答题卡的相应位置分将答案填在答题卡的相应位置 13设, x y满足约束条件 20, 240, 420, xy xy xy 则2zxy的取值范围是
8、14已知向量, a b满足2a,a bb,则ab的最小值为 15已知三棱锥PABC的所有顶点都在球O的球面上,2 3ABAC,4BC ,PB过球心O若球 O的表面积为36,则此三棱锥的体积为 16记各项均为正数的数列 n a的前n项和为 n S若 32 4aa, 11 = 1 nn n tSS S t -+ + + (2n) ,则 5 a的最 小值为 三三、解答题解答题:共共 70 分分解答应写出文字说明解答应写出文字说明,证明过程或演算步骤证明过程或演算步骤第第 1721 题为必考题题为必考题,每个试题考每个试题考 生都必须作答第生都必须作答第 22、23 题为选考题,考生根据要求作答题为选
9、考题,考生根据要求作答 (一)必考题:共(一)必考题:共 60 分分 17 (12 分) 已知四边形ABCD中,7AC ,5BC , 120ABC (1)求ABC的面积; (2)若ACD是等边三角形,求BD 2020 届届高三数学高三数学考前考前冲刺冲刺适应性适应性模拟卷模拟卷(理科)试题(理科)试题第第 4 页(共页(共 5 页) 页) 18 (12 分) 如图,在六棱锥PABCDEF中,底面ABCDEF是边长为4的正六边形, 2 7PAPC (1)证明:平面PAC 平面PBE; (2)若 2 5PB ,求二面角BPAF的余弦值 19 (12 分) 已知抛物线 2 :4E yx的焦点为F,准
10、线为l,过F的直线与E相交于,A B两点 (1)以AB为直径的圆与y轴交,C D两点,若10AB ,求CD; (2) 点P在l上, 过点F且垂直于x轴的直线与,PA PB分别相交于,M N两点, 证明:=MFNF 20 (12 分) 2019 年泉州市农村电商发展迅猛,成为创新农产品交易方式、增加农民收入、引导农业供给侧结构性 改革、促进乡村振兴的重要力量,成为乡村振兴的新引擎。2019 年大学毕业的李想,选择回到家乡泉 州自主创业,他在网上开了一家水果网店 2019 年双十一期间,为了增加水果销量,李想设计了下面两种促销方案: 方案一: 购买金额每满 120 元, 即可抽奖一次, 中奖可获得
11、 20 元, 每次中奖的概率为p(01p) , 假设每次抽奖相互独立 方案二:购买金额不低于 180 元时,即可优惠x元,并在优惠后的基础上打九折 (1) 在促销方案一中, 设每10个抽奖人次中恰有6人次中奖的概率为 fp, 求 fp的最大值点 0 p; (2)若促销方案二中,李想每笔订单得到的金额均不低于促销前总价的八折,求x的最大值; (3)以(1)中确定的 0 p作为p的值,且当x取最大值时,若某位顾客一次性购买了 360 元,则该 顾客应选择哪种促销方案?请说明理由 2020 届届高三数学高三数学考前考前冲刺冲刺适应性适应性模拟卷模拟卷(理科)试题(理科)试题第第 5 页(共页(共 5
12、 页) 页) 21 (12 分) (1)求函数( )sin x f xxe在 3 ,2 2 的最大值; (2)证明:函数 1 ( )sin 2 x g xxxe在(0,2 )有两个极值点 12 ,x x,且 12 1 ()() 2 g xg x (二)选考题:共(二)选考题:共 10 分请考生在第分请考生在第 22、23 题中任选一题作答,如果多做,则按所做的第一题计分题中任选一题作答,如果多做,则按所做的第一题计分 22 选修 44:坐标系与参数方程 (10 分) 直角坐标系xOy中,曲线 1 C的方程为 22 1 164 xy 以坐标原点O为极点,x轴的正半轴为极轴建立极 坐标系,点(1,) 6 Q ,曲线 2 C的极坐标方程为2cos() 6 (1)求 1 C的极坐标方程与 2 C的直角坐标方程; (2)设直线l过点Q交 2 C于点,M N(异于原点) ,射线,OM ON分别交 1 C于点,A B,求证: 22 11 |OAOB 为定值 23 选修 45:不等式选讲 (10 分) 已知函数 2 f xxx, 14g xk x,0k (1)当1k 时,求不等式 f xg x的解集; (2)若正数, ,a b c满足abck,且 14g xgx,证明: 6f af bf c