[学习]八年级数学上册-专题突破讲练-三角形的内外角关系试题-(新版)青岛版.doc

上传人(卖家):刘殿科 文档编号:5840557 上传时间:2023-05-12 格式:DOC 页数:13 大小:446.50KB
下载 相关 举报
[学习]八年级数学上册-专题突破讲练-三角形的内外角关系试题-(新版)青岛版.doc_第1页
第1页 / 共13页
[学习]八年级数学上册-专题突破讲练-三角形的内外角关系试题-(新版)青岛版.doc_第2页
第2页 / 共13页
[学习]八年级数学上册-专题突破讲练-三角形的内外角关系试题-(新版)青岛版.doc_第3页
第3页 / 共13页
[学习]八年级数学上册-专题突破讲练-三角形的内外角关系试题-(新版)青岛版.doc_第4页
第4页 / 共13页
[学习]八年级数学上册-专题突破讲练-三角形的内外角关系试题-(新版)青岛版.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、三角形的内外角关系一、三角形的内角和定理1. 定理:三角形的内角和是180要点: 定理的证明根据是平行线的性质。 定理的证明方法有多种,选取以下两种方法加以掌握。证明方法把三个角“凑”到A处,过点A作直线PQ/BC,这样就相当于把B移到了1的位置,把C移到了2的位置。延长BC到D,过点C作射线CE/BA,这样就相当于把移到了1的位置,把移到了2的位置。2. 推论:直角三角形的两个锐角互余。ABC180 又C90 AB90 A与B互余。 等边三角形的每一个内角都是60。DEF180,又D=E=F,3D180,D=E=F=60定理的应用: 在三角形中,已知两个内角可以求出第三个内角。如:在ABC中

2、,C180(AB) 在三角形中,已知三个内角和的比或它们之间的关系,求各内角。如:在ABC中,已知A:B:C2:3:4,则可设A、B、C为2x、3x、4x,利用方程求得度数。二、三角形的外角1. 外角的定义:三角形一边与另一边的延长线组成的角,叫做三角形的外角。如ACD与BCE均为外角。2. 三角形外角的性质(1)三角形的一个外角等于和它不相邻的两个内角之和。(2)三角形的一个外角大于任何一个与它不相邻的内角。提示:三角形每个顶点处有两个外角,它们是对顶角,所以三角形共有六个外角。通常每个顶点处取一个外角,因此,我们常说三角形有三个外角。因为三角形的每个外角与它相邻的内角是邻补角,由三角形的内

3、角和是180,可推出三角形的外角和是360。三、三角形的外角与内角的关系1. 三角形的一个外角与它相邻的内角互补,如图:1与4是邻补角,即14180;2. 三角形的一个外角等于与它不相邻的两个内角的和,如图:123;3. 三角形的一个外角大于与它不相邻的任何一个内角,如图:12,13。【拓展】两种图形的认识(1)对顶三角形:有一个角是对顶角的两个三角形。特点是:每个三角形中除对顶角外,另两个角的和与另一个三角形中其余两个角的和相等。如图:ABDE(2)图形的折叠:将图形沿某条线折叠,使其一部分与图形中某部分重合,可以形成边、角等多个相等关系。如图:123方法归纳:三角形的内、外角关系的知识点应

4、注意以下几点:(1)实际应用中,题目中往往把ABC180这个条件隐藏,要时时注意想到这个条件。(2)外角关系强调的是“不相邻”三个字,不要被题目偷换概念。(3)应用三角形的内、外角关系解题时,经常要使用到高、角平分线,注意二者定义中,高有垂直的结论,即有角是90,角平分线的作用是将一个角平分成两个相等的角,有角的数值存在。(4)三角形的内角和定理和三角形的外角的性质是求角度及与角有关的推理论证时常使用的理论依据,另外,在证明角的不等关系时也常想到外角的性质。技巧归纳:解决本部分习题时要注意几种数学思想的应用:方程的思想根据角与角之间的关系求角的度数时可列方程(或方程组)求解。如:A:B:C1:

5、2:3,求三角形的形状。整体运用的思想将待解决的问题看作一个整体,通过研究问题做整体处理后,达到解决问题的目的。如:A40,求34BC的度数。转化的思想求较复杂的图形中多个角的度数和的问题。解题的关键是利用有关性质把这些角集中到一个三角形中,再利用三角形内角和的性质解决。如:求五角星的内角和问题。总结:1. 学会综合运用内、外角关系解决图形的角度计算问题。 2. 将各种解题思想及方法掌握好,有利于今后几何的学习。 例题1 如图,将三角尺的直角顶点放在直线a上,ab,150,260,则3的度数为()A. 50B. 60 C. 70D. 80解析:先根据三角形的内角和定理求出4的度数,由对顶角的性

6、质可得出5的度数,再由平行线的性质即可得出结论。答案:在BCD中,150,260,418012180506070,5470,ab,3570。故选C。点拨:本题考查的是平行线的性质、三角形的内角和定理。解答此类题目时往往用到三角形的内角和是180这一隐藏条件。例题2 如图,在ABC中,ACB90,沿CD折叠CBD,使点B恰好落在AC边上的点E处。若A22,则BDC等于()A. 44B. 60C. 67D. 77解析:由ABC中,ACB90,A22,可求得B的度数。由折叠的性质可得:CEDB68,BDCEDC。由三角形外角的性质,可求得ADE的度数,继而求得答案。答案:在ABC中,ACB90,A2

7、2,B90A68,由折叠的性质可得:CEDB68,BDCEDC,ADECEDA46,BDC67。故选C。点拨:此题考查了折叠的性质、三角形的内角和定理以及三角形外角的性质。此题注意掌握折叠前后图形的对应关系,以及数形结合思想的应用。1. 几何图形变换的研究几何图形的变换,核心内容是首图形的证明基本思路,变换后的图形与首图形的总体证明方法相同。但要注意的是这种题中所蕴含的数学思想:通过变换掌握举一反三的能力,将知识学活、用活。通过变换,提高面对试题的研读能力,从而做到一会百会。(1)充分分析首图形的条件,在此基础上将其应用到后面的图形中;(2)在变换时,认清本质,对变换后的结果依照首图形结论加以

8、书写,注意与第一个结论保持格式上的一致,避免评卷老师的误判。(3)注意变换后,结论的变与不变:基本规律是线段与角相等的一般来说结论都会不变,但和、差类的变换最后其结论都会发生变化。例题 如图所示,在ABC中,A,ABC的内角平分线和外角平分线交于点P,且P,试探求下列各图中与的关系,并选择一个加以说明。解析:本题没有给出具体角度,所以最后形成的将是一个关系式。主要考查角平分线的定义、三角形的内角和定理以及外角的性质,分析可知图(1)90;(2)、(3)变换后图形道理类似,但过程略有不同,可参考(1)应用的定理加以说明。答案:解:(1)90;(2);(3)90。选择(1)进行证明。在图(1)中,

9、根据三角形的内角和定理可得:ABCACB180A。BP与CP是ABC的角平分线,PBC ABC,PCB ACB,PBCPCB (ABCACB)90。在PBC中,BPC180(PCBPBC)180(90)90。90 。2. 化归思想及对顶三角形的应用化归思想是指将不同图形中的条件转化到同一图形中,三角形内角和的转化是利用有关性质把不同图形中的角集中到一个三角形中,再利用三角形的内角和定理、外角性质进行解决。对顶三角形的其他应用包含整体应用的思想,将不同三角形的内角和整体转化到一个图形中,从而解决复杂图形中的求值问题。例题 (1)如图所示,线段AD、BC相交于点O,所组成的ABO与CDO叫做“对顶

10、三角形”。已知A70,B25,求CD的度数。(2)如图所示,求ABCDE的度数。(3)如图所示,求ABCDEF的度数。解析:先根据对顶三角形的性质求得图中 ABCD 702595,图中考虑连接BC,则可将问题转化为对顶三角形的问题,总和为180;图 中图形将三个三角形中的AB、CD、EF转化到GIH中,利用对顶三角形的性质得到2(GIHGHIHGI)360答案:解:(1)在ABO与CDO中因为 ABAOBCDCOD180AOBCOD所以ABCD因为A70,B25所以CD702595(2)连接BC因为EOD与BOC为对顶三角形,所以DEOBCOCB所以ABCDE180(3)因为ABG与GIH、E

11、FI与GIH、CHD与GIH都是对顶三角形,ABGIHGHICDGIH HGIEFGHIHGI所以ABCDEF2(GIHGHIHGI)360(答题时间:45分钟)一、选择题1. 在给定的下列条件中,不能判定三角形是直角三角形的是()A. ABC123 B. ABCC. ABC D. A2B3C2. 已知ABC的三个内角A、B、C满足关系式BC3A,则此三角形中( )A. 一定有一个内角为45 B. 一定有一个内角为60C. 一定是直角三角形 D. 一定是钝角三角形*3. 如图,在ABC中,C70,沿图中虚线截去C,则12( )A. 360 B. 250 C. 180 D. 140*4. 已知A

12、BC中,ABC和ACB的平分线交于点O,则BOC一定( )A. 小于直角B. 等于直角C. 大于直角D. 不能确定*5. 如图ABC中,BADCBEACF,ABC50,ACB62,则DFE的大小是( )A. 50 B. 62 C. 68 D. 70*6. 如图,在折纸活动中,小明制作了一张ABC纸片,点D、E分别在边AB、AC上,将ABC沿着DE折叠压平,A与A重合,若A75,则12()A. 150B. 210C. 105D. 75二、填空题*7. 如图,已知ABC的B和C的外角平分线交于点D,A40,那么D_。*8. 如图,在ABC中,BC,FDBC,DEAB,AFD158, 则EDF _。

13、*9. 如图,ACD是ABC的外角,ABC的平分线与ACD的平分线交于点A1,A1BC的平分线与A1CD的平分线交于点A2,An1BC的平分线与An1CD的平分线交于点An。设A。则:(1)A1;(2)An。三、解答题10. 判断适合下列条件的ABC是锐角三角形、直角三角形还是钝角三角形?(1)A20,B75;(2)AB30,BC30;(3)ABC*11. 一个零件的形状如图,按规定A应等于90,B、D应分别是20和30,李叔叔量得BCD142就判定这个零件不合格,你能说出道理吗?*12. 如图,已知在ABC中,B70,BACBCA32,CDAD于D,且ACD35,求BAE的度数。*13. 如

14、图,点C为RtABE的边AE延长线上的一点,BEAC,点D为边AB上一点,DC交BE于点F,已知ADC80,B35,求C的度数。*14. 如图所示,已知12,34,C32,D28,(1)求P的度数。(2)请推断P与C、D的关系。*15. 已知ABC中,BAC100。(1)若ABC和ACB的平分线交于点O,如图所示,试求BOC的大小;(2)若ABC和ACB的三等分线(即将一个角平均分成三等份的射线)相交于O、O1,如图所示,试求BOC的大小;(3)以此类推,若ABC和ACB的n等分线自下而上依次相交于O、O1、O2、,如图所示,试探求BOC的大小与n的关系,并判断当BOC170时,是几等分线的交

15、线所成的角。1. C 解析:利用比例设方程,A、B、D中都有直角,C选项中三角相等则每一角为60,则选C。2. A 解析:题目中隐含的条件为ABC180,将BC3A代入,则可知A45。3. B 解析:利用整体运用的思想,C70,则1、2外角的和为110,12360110250。4. C 解析:ABCACBBAC180,ABCACB180BAC,ABC和ACB的平分线交于点O,则BOC180(180BAC)90BAC,所以选C。5. C 解析:因为DFEACFCAF,BADCBEACF,所以DFEBAC,因为ABC50,ACB62,则BAC180506268。6. A 解析:连接A A,根据三角

16、形外角的性质,122A,所以12150。7. 70 解析:因为AABCACB180,A40,所以ABCACB140,所以ABC与ACB的外角和 360140220,因为CD、BD是角平分线,所以BCDCBD110,所以D70。8. 68 解析:因为AFD158,所以CFD22,因为FDBC,所以C68,又因为BC,所以B68,因为DEAB,所以BDE22,所以EDF180902268。9. (1),(2) 解析:(1)A1B是ABC的平分线,A2B是A1BC的平分线,A1BCABC,A1CDACD,又ACDAABC,A1CDA1BCA1,AABC2(A1BCA1),A1A,A,A1;(2)同理

17、可得A2A1 ,所以An。10. 解:(1)因为C180AB,A20,B75;所以C180AB180207585,所以三角形为锐角三角形。(2)因为AB30,BC30,所以A30B,CB30,因为ABC180,所以30BBB30180,所以B60,A90,C30,所以此三角形为直角三角形。(3)因为ABC,所以设Ax,B2x,C6x,因为ABC180,所以x2x6x180,所以x20,所以6x120,所以该三角形为钝角三角形。11. 解:这个零件不合格。道理如下:延长DC交AB与点E,因为DEB为ADE的外角,所以DEBAD,因为DCB为BEC外角,所以DCBCEBB,因为A应等于90,B、D

18、应分别是20和30,所以BCD140,所以这个零件不合格。12. 解: B70 (已知) BACBCA110 BAC:BCA3:2(已知) BAC110/5366 BCA110/5244 CDAD(已知) ADC90又ACD35(已知)DAC180ADCACD55BAE180DACBAC18055665913. 解:因为BEAC,所以AEB90,因为B35,所以A180903555,因为ADC80,所以C180ADCA180805545。14. 解:(1)因为1、C和3、P是对顶三角形中的两对角所以,1C3P;因为4、D和2、P是对顶三角形中的两对角所以,4D2P所以1C4D3P2P又因为12、34、C32、D28得到32282P所以P30(2)同理:P。15. 解:BAC100,ABCACB80,(1)点O是ABC与ACB的角平分线的交点,OBCOCB40,BOC140。(2)点O是ABC与ACB的三等分线的交点,OBCOCBBOC(3)点O是ABC与ACB的n等分线的交点,OBCOCBBOC180当BOC170时,是八等分线的交线所成的角。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 考试试卷
版权提示 | 免责声明

1,本文([学习]八年级数学上册-专题突破讲练-三角形的内外角关系试题-(新版)青岛版.doc)为本站会员(刘殿科)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|