《数值计算方法》精彩试题集及问题详解.doc

上传人(卖家):刘殿科 文档编号:5847049 上传时间:2023-05-12 格式:DOC 页数:16 大小:483KB
下载 相关 举报
《数值计算方法》精彩试题集及问题详解.doc_第1页
第1页 / 共16页
《数值计算方法》精彩试题集及问题详解.doc_第2页
第2页 / 共16页
《数值计算方法》精彩试题集及问题详解.doc_第3页
第3页 / 共16页
《数值计算方法》精彩试题集及问题详解.doc_第4页
第4页 / 共16页
《数值计算方法》精彩试题集及问题详解.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、数值计算方法复习试题一、填空题:1、,则A的LU分解为 。答案:3、,则过这三点的二次插值多项式中的系数为 ,拉格朗日插值多项式为 。答案:-1, 4、近似值关于真值有( 2 )位有效数字;5、设可微,求方程的牛顿迭代格式是( );答案6、对,差商( 1 ),( 0 );7、计算方法主要研究( 截断 )误差和( 舍入 )误差;8、用二分法求非线性方程f (x)=0在区间(a,b)内的根时,二分n次后的误差限为( );10、已知f(1)2,f(2)3,f(4)5.9,则二次Newton插值多项式中x2系数为( 0.15 );11、 解线性方程组Ax=b的高斯顺序消元法满足的充要条件为(A的各阶顺

2、序主子式均不为零)。12、 为了使计算 的乘除法次数尽量地少,应将该表达式改写为 ,为了减少舍入误差,应将表达式改写为 。13、 用二分法求方程在区间0,1内的根,进行一步后根的所在区间为 0.5,1 ,进行两步后根的所在区间为 0.5,0.75 。 14、 求解方程组的高斯塞德尔迭代格式为 ,该迭代格式的迭代矩阵的谱半径= 。15、 设,则 ,的二次牛顿插值多项式为 。16、 求积公式的代数精度以( 高斯型 )求积公式为最高,具有( )次代数精度。21、如果用二分法求方程在区间内的根精确到三位小数,需对分( 10 )次。22、已知是三次样条函数,则=( 3 ),=( 3 ),=( 1 )。2

3、3、是以整数点为节点的Lagrange插值基函数,则( 1 ),( ),当时( )。24、25、区间上的三次样条插值函数在上具有直到_2_阶的连续导数。26、改变函数 ()的形式,使计算结果较精确 。27、若用二分法求方程在区间1,2内的根,要求精确到第3位小数,则需要对分 10 次。28、写出求解方程组的Gauss-Seidel迭代公式 ,迭代矩阵为 ,此迭代法是否收敛 收敛 。31、设,则 9 。32、设矩阵的,则 。33、若,则差商 3 。34、线性方程组的最小二乘解为 。36、设矩阵分解为,则 。二、单项选择题:1、 Jacobi迭代法解方程组的必要条件是( C )。 AA的各阶顺序主

4、子式不为零 B C D 2、设,则为( C ) A 2 B 5 C 7 D 34、求解线性方程组Ax=b的LU分解法中,A须满足的条件是( B )。A 对称阵 B 正定矩阵 C 任意阵 D 各阶顺序主子式均不为零 5、舍入误差是( A )产生的误差。A. 只取有限位数 B模型准确值与用数值方法求得的准确值C 观察与测量 D数学模型准确值与实际值 6、3.141580是的有( B )位有效数字的近似值。 A 6 B 5 C 4 D 7 7、用 1+x近似表示ex所产生的误差是( C )误差。A 模型 B 观测 C 截断 D 舍入 8、解线性方程组的主元素消去法中选择主元的目的是( A )。A控制

5、舍入误差 B 减小方法误差C防止计算时溢出 D 简化计算 9、用1+近似表示所产生的误差是( D )误差。 A 舍入 B 观测 C 模型 D 截断 10、-3247500是舍入得到的近似值,它有( C )位有效数字。 A 5 B 6 C 7 D 811、设f (-1)=1,f (0)=3,f (2)=4,则抛物插值多项式中x2的系数为( A )。 A 05 B 05 C 2 D -2 12、三点的高斯型求积公式的代数精度为( C )。 A 3 B 4 C 5 D 213、( D )的3位有效数字是0.236102。(A) 0.0023549103 (B) 2354.82102 (C) 235.

6、418 (D) 235.5410114、用简单迭代法求方程f(x)=0的实根,把方程f(x)=0表示成x=j(x),则f(x)=0的根是( B )。(A) y=j(x)与x轴交点的横坐标 (B) y=x与y=j(x)交点的横坐标(C) y=x与x轴的交点的横坐标 (D) y=x与y=j(x)的交点15、用列主元消去法解线性方程组,第1次消元,选择主元为( A ) 。(A) 4 (B) 3 (C) 4 (D)916、拉格朗日插值多项式的余项是( B ),牛顿插值多项式的余项是( C ) 。(A) f(x,x0,x1,x2,xn)(xx1)(xx2)(xxn1)(xxn),(B) (C) f(x,

7、x0,x1,x2,xn)(xx0)(xx1)(xx2)(xxn1)(xxn),(D) 18、用牛顿切线法解方程f(x)=0,选初始值x0满足( A ),则它的解数列xnn=0,1,2,一定收敛到方程f(x)=0的根。19、为求方程x3x21=0在区间1.3,1.6内的一个根,把方程改写成下列形式,并建立相应的迭代公式,迭代公式不收敛的是(A )。(A) (B)(C)(D)21、解方程组的简单迭代格式收敛的充要条件是( )。(1), (2) , (3) , (4) 23、有下列数表x00.511.522.5f(x)-2-1.75-10.2524.25所确定的插值多项式的次数是( )。(1)二次;

8、 (2)三次; (3)四次; (4)五次25、取计算,下列方法中哪种最好?()(A); (B); (C) ; (D) 。27、由下列数表进行Newton插值,所确定的插值多项式的最高次数是()1.52.53.5-10.52.55.08.011.5(A); (B); (C) ; (D) 。29、计算的Newton迭代格式为( )(A) ;(B);(C) ;(D) 。 30、用二分法求方程在区间内的实根,要求误差限为,则对分次数至少为( ) (A)10; (B)12; (C)8; (D)9。32、设是以为节点的Lagrange插值基函数,则( )(A); (B); (C); (D)。 35、已知方

9、程在附近有根,下列迭代格式中在不收敛的是( )(A); (B); (C); (D)。36、由下列数据012341243-5确定的唯一插值多项式的次数为( )(A) 4; (B)2; (C)1; (D)3。三、是非题(认为正确的在后面的括弧中打,否则打)1、 已知观察值,用最小二乘法求n次拟合多项式时,的次数n可以任意取。 ( )2、 用1-近似表示cosx产生舍入误差。 ( )3、 表示在节点x1的二次(拉格朗日)插值基函数。 ( )4、牛顿插值多项式的优点是在计算时,高一级的插值多项式可利用前一次插值的结果。 ( ) 5、矩阵A=具有严格对角占优。 ( )四、计算题:1、 用高斯-塞德尔方法

10、解方程组 ,取,迭代四次(要求按五位有效数字计算)。答案:迭代格式 k000012.75003.8125 2.537520.20938 3.17893.680530.240432.59973.183940.504202.48203.70192、 已知13452654分别用拉格朗日插值法和牛顿插值法求的三次插值多项式,并求的近似值(保留四位小数)。答案: 差商表为一阶均差二阶均差三阶均差1236245-1-154-10 5、已知-2-101242135求的二次拟合曲线,并求的近似值。答案:解:0-244-816-8161-121-11-222010000031311133425481610200

11、1510034341正规方程组为 6、已知区间0.4,0.8的函数表0.4 0.5 0.6 0.7 0.80.38942 0.47943 0.56464 0.64422 0.71736如用二次插值求的近似值,如何选择节点才能使误差最小?并求该近似值。答案:解: 应选三个节点,使误差 尽量小,即应使尽量小,最靠近插值点的三个节点满足上述要求。即取节点最好,实际计算结果, 且 7、构造求解方程的根的迭代格式,讨论其收敛性,并将根求出来,。答案:解:令 .且,故在(0,1)内有唯一实根.将方程变形为 则当时,故迭代格式 收敛。取,计算结果列表如下:n01230.50.035 127 8720.096

12、 424 7850.089 877 325n45670.090 595 9930.090 517 3400.090 525 9500.090 525 008且满足 .所以. 8利用矩阵的LU分解法解方程组 。答案:解: 令得,得. 9对方程组 (1) 试建立一种收敛的Seidel迭代公式,说明理由;(2) 取初值,利用(1)中建立的迭代公式求解,要求。解:调整方程组的位置,使系数矩阵严格对角占优故对应的高斯塞德尔迭代法收敛.迭代格式为取,经7步迭代可得:. 10、已知下列实验数据xi1.361.952.16f(xi)16.84417.37818.435试按最小二乘原理求一次多项式拟合以上数据。

13、解:当0x1时,ex,则 ,且有一位整数. 要求近似值有5位有效数字,只须误差 .由 ,只要 即可,解得 所以 ,因此至少需将 0,1 68等份。 11、用列主元素消元法求解方程组 。解: 回代得 。 12、取节点,求函数在区间0,1上的二次插值多项式,并估计误差。解: 又 故截断误差 。15、用牛顿(切线)法求的近似值。取x0=1.7, 计算三次,保留五位小数。解:是的正根,牛顿迭代公式为, 即 取x0=1.7, 列表如下:1231.732351.732051.7320516、已知f (-1)=2,f (1)=3,f (2)=-4,求拉格朗日插值多项式及f (1,5)的近似值,取五位小数。解

14、:18、用Gauss-Seidel迭代法求解线性方程组 =,取x(0)=(0,0,0)T,列表计算三次,保留三位小数。解:Gauss-Seidel迭代格式为:系数矩阵严格对角占优,故Gauss-Seidel迭代收敛.取x(0)=(0,0,0)T,列表计算如下:11.6670.889-2.19522.3980.867-2.38332.4610.359-2.526 20、(8分)用最小二乘法求形如的经验公式拟合以下数据:1925303819.032.349.073.3解: 解方程组 其中 解得: 所以 , 22、(15分)方程在附近有根,把方程写成三种不同的等价形式(1)对应迭代格式;(2)对应迭

15、代格式;(3)对应迭代格式。判断迭代格式在的收敛性,选一种收敛格式计算附近的根,精确到小数点后第三位。解:(1),故收敛;(2),故收敛;(3),故发散。选择(1):, ,23、(8分)已知方程组,其中,(1) 列出Jacobi迭代法和Gauss-Seidel迭代法的分量形式。(2) 求出Jacobi迭代矩阵的谱半径。解:Jacobi迭代法:Gauss-Seidel迭代法:, 31、(12分)以100,121,144为插值节点,用插值法计算的近似值,并利用余项估计误差。用Newton插值方法:差分表:1001211441011120.04761900.0434783-0.00009411361

16、0+0.0476190(115-100)-0.0000941136(115-100)(115-121)=10.722755533、(10分)用Gauss列主元消去法解方程组: 3.0000 1.0000 5.0000 34.0000 0.0000 3.6667 0.3333 12.6667 0.0000 5.3333 -2.3333 4.3333 3.0000 1.0000 5.0000 34.0000 0.0000 5.3333 -2.3333 4.33330.0 0000 1.9375 9.687534、(8分)求方程组 的最小二乘解。, 若用Householder变换,则:最小二乘解:

17、(-1.33333,2.00000)T.37、(15分)已知方程组,其中,(1)写出该方程组的Jacobi迭代法和Gauss-Seidel迭代法的分量形式;(2)判断(1)中两种方法的收敛性,如果均收敛,说明哪一种方法收敛更快;解:(1)Jacobi迭代法的分量形式 Gauss-Seidel迭代法的分量形式 (2)Jacobi迭代法的迭代矩阵为, ,Jacobi迭代法收敛 Gauss-Seidel迭代法的迭代矩阵为, ,Gauss-Seidel迭代法发散 40、(10分)已知下列函数表:012313927(1)写出相应的三次Lagrange插值多项式;(2)作均差表,写出相应的三次Newton插值多项式,并计算的近似值。解:(1) (2)均差表:

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 待归类文档
版权提示 | 免责声明

1,本文(《数值计算方法》精彩试题集及问题详解.doc)为本站会员(刘殿科)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|