1、新课标六年级上册教案第一单元 位置教学目标:1在具体的情境中,探索确定位置的方法,能用数对表示物体的位置。2. 使学生能在方格纸上用数对确定位置。教学重点:能用数对表示物体的位置。教学难点:能用数对表示物体的位置,正确区分列和行的顺序。一、 导入1、 我们全班有53名同学,但大部分的同学老师都不认识,如果我要请你们当中的某一位同学发言,你们能帮我想想要如何表示才能既简单又准确吗?2、 学生各抒己见,讨论出用“第几列第几行”的方法来表述。二、 新授1、 教学例1(1) 如果老师用第二列第三行来表示同学的位置,那么你也能用这样的方法来表示其他同学的位置吗?(2) 学生练习用这样的方法来表示其他同学
2、的位置。(注意强调先说列后说行)(3) 教学写法:同学的位置在第二列第三行,我们可以这样表示:(2,3)。按照这样的方法,你能写出自己所在的位置吗?(学生把自己的位置写在练习本上,指名回答)2、 小结例1:(1) 确定一个同学的位置,用了几个数据?(2个)(2) 我们习惯先说列,后说行,所以第一个数据表示列,第二个数据表示行。如果这两个数据的顺序不同,那么表示的位置也就不同。3、 练习:(1) 教师念出班上某个同学的名字,同学们在练习本上写出他的准确位置。(2) 生活中还有哪里时候需要确定位置,说说它们确定位置的方法。4、 教学例2(1) 我们刚刚已经懂得如果表示班上同学所在的位置。现在我们一
3、起来看看在这样的一张示意图上(出示示意图),如何表示出图上的场馆所在的位置。(2) 依照例1的方法,全班一起讨论说出如何表示大门的位置。(3,0)(3) 同桌讨论说出其他场馆所在的位置,并指名回答。(4) 学生根据书上所给的数据,在图上标出“飞禽馆”“猩猩馆”“狮虎山”的位置。(投影讲评)三、 练习1、 练习一第4题(1) 学生独立找出图中的字母所在的位置,指名回答。(2) 学生依据所给的数据标出字母所在的位置,并依次连成图形,同桌核对。2、 练习一第3题:引导学生懂得要先看页码,在依照数据找出相应的位置3、 练习一第6题(1) 独立写出图上各顶点的位置。(2) 顶点A向右平移5个单位,位置在
4、哪里?哪个数据发生了改变?点A再向上平移5个单位,位置在哪里?哪个数据也发生了改变?(3) 照点A的方法平移点B和点C,得出平移后完整的三角形。(4) 观察平移前后的图形,说说你发现了什么?(图形不变,右移时列也就是第一个数据发生改变,上移时行也就是第二个数据发生改变)四、 总结我们今天学了哪些内容?你觉得自己掌握的情况如何?五、 作业练习一第1、2、5、7、8题。教学追记: 本堂课,我能充分利用学生已有的生活经验和知识,从学生熟悉的座位顺序出发,让学生在口述“第几组几个”的练习过程中,潜移默化地建立起“第几列第几行”的概念,让学生从习惯上培养起先说“列”后说“行”的习惯。然后再过度到用网格图
5、来表示位置,让学生懂得从网格坐标上找到相应的位置。这样由直观到抽象、由易到难,符合孩子的学习特点。第二单元 分数乘法单元目标:1、使学生理解分数乘法的意义,掌握分数乘法的计算法则,并能熟练地进行计算。2、使学生掌握分数乘加、乘减混合运算,理解整数乘法运算定律对于分数乘法同样适用。3、使学生理解分数乘法应用题中的数量关系,会解答求一个数的几分之几是多少的应用题。4、 使学生理解倒数的意义,掌握求倒数的方法。单元重点:分数乘法的意义和计算法则。单元难点:1、 理解分数乘法的意义,根据分数乘法的意义去解答这类应用题。2、 分数乘法计算法则的推导。1、分数乘法(1)分数乘整数教学目标:1、在学生已有的
6、分数加法及分数基本意义的基础上,结合生活实例,通过对分数连加算式的研究,使学生理解分数乘整数的意义,掌握分数乘整数的计算方法,能够应用分数乘整数的计算法则,比较熟练地进行计算。2、通过观察比较,指导学生通过体验,归纳分数乘整数的计算法则,培养学生的抽象概括能力。3、 引导学生探求知识的内在联系,激发学生学习兴趣。通过演示,使学生初步感悟算理,并在这过程中感悟到数学知识的魅力,领略到美。教学重点:使学生理解分数乘整数的意义,掌握分数乘整数的计算方法。教学难点:引导学生总结分数乘整数的计算法则。教学过程:一、 复习1.出示复习题。(1)列式并说出算式中的被乘数、乘数各表示什么?5个12是多少? 9
7、个11是多少? 8个6是多少?(2)计算: 2.引出课题。这题我们还可以怎么计算?今天我们就来学习分数乘法。二、 新授1、 利用教学分数乘法。(1) 这道加法算式中,加数各是多少?(都是)(2) 表示几个相同加数的和,我们还可以用什么方法来计算?怎么列式?(乘法,3)(3) 9,那么3,所以3_9。同学们想想看,39计算过程是怎样的?谁能把它补充完整。2、 出示例1,画出线段图,学生独立列式解答。?(1) 引导学生看图,理解“人跑一步的距离相当于袋鼠跳一下的”,就是把袋鼠跳一下的距离即这一整条线段看作单位“1”。把这条线段平均分成11份,其中的2份就表示人跑一步的距离。(2) 引导学生根据线段
8、图理解,人跑一步是袋鼠跳一下的,那么“人跑3步的距离相当于袋鼠跳一下的几分之几?”就是求3个是多少?(列式:3 =)3、 结合以上两题,归纳出分数乘整数的计算法则:分数乘整数,用分数的的分子和整数相乘的积作分子,分母不变。4、 练习:练习完成“做一做”第2题。5、 教学例2(1)出示6,学生独立计算。(2)根据计算结果,学生观察讨论:乘得的积是不是最简分数?应该怎么办?(3)学生通过自己的想法的来约分:A、先约分再计算;B、先计算得出乘积后约分。(4)对比,让学生体会先约分再计算的方法比较简便,同时向学生说明先约分的书写格式。三、练习1、 完成“做一做”的第一题。(提醒学生,计算前先观察分数的
9、分母与整数是否可以约分,养成先约分在计算的习惯)2、 “做一做”第3题。(先让学生说说解题思路,讨论先算什么可以使计算简便。如果用连乘算式,要提醒学生先约分再计算。)三、 作业练习二第1、2、4题。(2)一个数乘分数教学目标:1、创设自主探索的学习情境,使学生在合作交流、尝试练习、归纳领悟等过程中,理解一个数乘分数的意义,掌握分数乘以分数的计算法则,学会分数乘分数的简便计算。2、通过组织学生进行迁移、类推、归纳、交流等数学活动,培养学生的类推、归纳能力。3、通过一个数乘以分数应用的广泛性事例,对学生进行学习目的性教育,激发学生学习动机和兴趣。教学重点:理解一个数乘分数的意义,掌握分数乘分数的计
10、算方法。教学难点:推导算理,总结法则。教学过程:一、导入1、计算下列各题并说出计算方法。 、上面各题都是分数乘以整数,说一说分数乘以整数的意义。3、引入:这节课我们来学习一个数乘以分数的意义和计算方法。二、新课1、教学例3(1)出示条件和问题:每小时粉刷这面墙的,小时粉刷这面墙的几分之几?根据公式“工作效率工作时间工作总量”,学生列式:(2)引导学生动手操作,把一张纸张看作一面墙,第一步先涂出1小时粉刷的面积,即这面墙的,第二步再涂出小时粉刷这面墙的面积,即的,由此得出这个乘法算式表示“的是多少?”(3)根据直观的操作结果,得出,根据刚才操作的过程和结果推导出计算方法:=。(4)提出问题: 小
11、时粉刷多少呢?让学生用前面的方法涂色、推导、计算,自主解决问题。2、相关练习:练习二第5题。3、小结一个数乘分数的意义和计算方法。(1)意义:一个数乘分数,表示求这个数的几分之几是多少。(2)计算法则:分数乘分数,用分子乘分子,分母乘分母。4、教学例4(1)引导学生分析题意,根据“速度时间路程”的数量关系列出算式: 。1151(2)先让学生独立计算,再交流计算的方法,明确分数乘分数也可以先约分再乘。通过展示学生的计算过程,进一步明确约分的书写格式: (km) (3)学生独立解答“5分钟飞行多少千米?”,讲评中介绍分数乘整数的另一种格式。5、巩固练习:P11“做一做”(注意提醒学生要先观察能否约
12、分,再着手计算)。三、练习1、练习三第6题(1)求2枝长多少分米,就是求2个是多少?算式:2(2)求枝或枝长多少分米,就是求的是多少,或的是多少。2、练习三第9题。(学生讨论交流,说说错在哪里,结合学生易犯的错误讲解)四、作业练习二第3、7、8、10题。教学追记:分数乘整数、分数乘整数这两堂课,我都注重从生活引入,并通过直观的线段图、折纸等方式让学生理解算理。课中,我能改变以例题、示范、讲解为主的教学方式,改变以记忆法则、机械训练为主的学习方式,引导学生投入到探索与交流的学习活动之中,让学生变被动为主动,参与到算理的探讨、运算规律的归纳中来。(3)分数混合运算和简便运算教学目标:1、通过创设自
13、主探究,尝试迁移、合作交流的探究情境,使学生理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。2、在观察、迁移、尝试练习、交流反馈等活动中,培养学生的推理能力及思维的灵活性。3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆猜测,培养他们勇于实践的思维品质。教学重点:理解整数乘法运算定律对于分数乘法同样适用,并能应用这些定律进行一些简便计算。教学难点:熟练掌握运算定律,灵活、准确、合理地进行计算。教学过程:一、复习1、整数混合运算的运算顺序是怎么样?(先算二级运算,后算一级运算)2、哪些运算属于二级运算,哪些运算属于一级运算?(乘、除法属于二级运算,加、减法属于一级
14、运算)遇到有括号的题目该怎么来计算?(有括号的要先算小括号里面的,再算中括号里面的)3、观察下面各题,先说说运算顺序,再进行计算。(1)36215 (2)5673 (3)15(3427)二、新授1、向学生说明:分数混合运算的顺序和整数的运算顺序相同。按照此规则,学生仔细确定运算顺序后计算下面各题。(1) (2) (3) (4)2、复习整数乘法的运算定律(1)乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)乘法分配律:(ab)c=acbc(2)这些运算定律有什么用处?你能举例说明吗?(3)用简便方法计算:2574 0.361013、推导运算定律是否适用于分数。(1)鼓励学生大胆猜测并勇
15、于发表自己的个人意见。(2)验证:有些同学认为整数乘法的运算定律能适用于分数乘法,而有些同学认为不能,你们能找到证据证明自己的观点吗?(利用例5的三组算式,小组讨论、计算,得出两边式子的关系)(3)各四人小组汇报讨论和计算结果。4、教学例6(1)出示:,学生先独立计算,然后全班交流,说一说应用了什么运算定律?(应用乘法交换律)(2)出示:,学生先观察题目,然后指名说说这道题适用哪个运算定律,为什么?(适用乘法分配率,因为4和4都能先约分,这样能使数据变小,方便计算)(3)小结:应用乘法交换律、结合律和分配律,可以使一些计算简便,在计算时,要认真观察已知数有什么特点,想想应用什么定律可以使计算简
16、便。三、练习P14“做一做”:先让学生观察题目中的已知数的特点,说说怎样做简便?应用了什么运算定律。然后再独立完成练习。(4)练习课教学目标:1、使学生掌握分数乘加、乘减混合运算的顺序,能正确地进行计算。2、在学习的过程中培养学生的合作意识及认真、仔细的良好学习习惯。教学重点:熟练掌握运算定律,灵活、准确、合理地进行简便计算。教学难点:熟练掌握运算定律,准确、合理地进行简便计算。教学过程:一 、复习1、复习分数混合运算的运算顺序。2、复习乘法的简便运算定律乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)乘法分配律:(ab)c=acbc二、巩固练习1、练习三第1题:应用运算定律进行简便
17、计算(引导学生仔细观察算式特点,正确运用定律进行计算)。2、练习三第三题:分数混合运算(提醒学生注意运算顺序,如果可以应用韵律进行计算的题目也可以选择用简便方法计算,如: (1);(5)既可以按运算顺序先算小括号里面的,也可以应用乘法分配律进行计算。3、练习三第2题:一朵花要用张纸,一个同学做了9朵,列式9,另一个同学做了11朵,列式11,他们一共做了911(朵),学生还可能这样列式:(911),引导学生发现,这种列式实际上就是乘法分配律的两种形式。4、练习三第8题:改错题,这两道题主要都是运算顺序错误,学生在纠错的同时也巩固了先乘除、后加减的运算顺序。5、练习三第6题:要求学生观察题目,能用
18、简便算法的要用简便算法。6、练习三第4、5、9题:先让学生分析题意,再列式计算。计算中提醒学生注意运用定律使计算简便。三、布置作业 完成相关的练习册。教学追记: 本节课本只是一节计算课,但我不想应用传统的讲授法来告诉学生,整数乘法的运算同样适用分数,然后按部就班的教学例题,强制性地要求学生按照老师的教法来解题。我认为这样的教学剥夺了学生学习的主动性和自主性。因而这堂课我设计以学生的自主学习为主,放手给学生,鼓励学生大胆猜想,再利用四人学习小组相互探讨,利用实例进行验证,最后在班级这个大氛围内最后验证。在这个过程中,学生完全是学习的主人,而教师只是辅助性的导,包括后面例题的教学都充分体现了这一理
19、念。本堂课学生的学习兴趣和学习自信都充分地得到了激发。2、解决问题(1)分数乘法一步应用题教学目标:1、联系生活实际,创设探究情境,使学生初步掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法一步应用题。2、在观察、猜想、尝试练习、交流反馈等活动中,培养学生分析能力,发展学生思维。3、创设开放、民主、有趣的自主探究空间,鼓励学生大胆质疑,培养他们的创新能力。教学重点:理解题中的单位“1”和问题的关系。教学难点:抓住知识关键,正确、灵活判断单位“1”。教学过程:一、复习、先说下列各算式表示的意义,再口算出得数。12、列式计算。 ()的是多少?()的是多少?3、学生得出:求一个
20、数的几分之几用乘法。二、新授1、教学例1(1)引导学生抓住关键句“我国人均耕地面积仅占世界人均耕地面积的”,结合线段图理解题意,找到解题思路。(2)组织学生讨论,对于这句分率句该如何来理解?(通过讨论,使学生理解这句话是把“我们人均耕地面积”与“世界人均耕地面积”相比较,其中“世界人均耕地面积”是 表示单位“1”的量,知道世界人均耕地面积为2500平方米,求我国人均耕地面积就是求2500的是多少)(3)在分析题意的基础上,学生独立列式、计算。 25001000(平方米)2、结合计算结果,让学生说说自己的想法,培养学生分析数据的能力,进行国情教育。3、巩固练习:“做一做”,让学生画线段图表示题意
21、,说说自己是怎样想的?依据是什么?然后独立解答。三、练习1、练习四第2题:让学生先找出分率句中隐藏的单位“1”全世界的丹顶鹤数2000只。2、练习四第3题:让学生先找到分率句和单位“1”,再独立列式解答。四、总结解答“求一个数的几分之几是多少”的应用题的解题步骤是什么?(找出分率句、确定单位“1”,画出线段图帮助理解题意,最后再列式解答)教学追记:本堂课是解决“求一个数的几分之几是多少”的问题,教学中,我能紧扣分数乘分数的意义进行复习,并事先复习如“20的是多少?”的文字题,为解决与此相似的应用题做好准备。由于本节课是分数应用题学习的初始,因而教学中,我除了帮助学生分析、理解题意之外,更重要的
22、还在于教给学生分析、解答分数应用题的方法,特别是在如何找单位“1”这个关键点上,更是花了较多的时间,但我认为这是十分必要的。(2)两步分数乘法应用题教学目标:1、使学生掌握分数乘法应用题的数量关系,学会应用一个数乘以分数的意义解答分数乘法的两步应用题。2、发展学生思维,侧重培养学生分析问题的能力。教学重点:理解数量关系。教学难点:根据多几分之几或少几分之几找出所求量的对应分率。教学过程:一、 复习1、口答:把什么看作单位“1”的量,谁是几分之几相对应的量?(1)一块布做衣服用去。 (2)用去一部分钱后,还剩下。(3)一条路,已修了。 (4)水结成冰,体积膨胀。(5)甲数比乙数少。2、口头列式:
23、(1)32的是多少? (2)120页的是多少?(3)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后,降低了,降低了多少分贝?(4)绿化造林对可降低噪音,原来80分贝的汽笛噪音,经绿化隔离带后只剩下原来的,人现在听到的声音是多少分贝?3、你能把口头列式计算中的第(3)(4)题合并成一道题吗?4、根据学生回答,出示例4,并指出:这就是我们今天要学习的“稍复杂的分数乘法应用题”。二、新授1、教学例2(1)运用线段图帮助学生分析题意,寻找解题方法。(2)让学生说出图中各部分表示什么?哪些是已知的,哪些是要求的,哪一个是表示单位“1”的量?让后把线段图表示完整。降低?分贝现在?分贝80分贝
24、(3) 四人小组讨论,根据线段图提出解决办法,并列式计算。解法一:8080801070(分贝)现在?分贝80分贝?(4)鼓励学生根据题意、结合线段图,想出第二种解答方法。 解法二:80(1)8070(分贝)(5)学生讨论两种解法的不同:两种方法都是从整体与部分的关系入手。第一种思路是从总量里减去一个部分量;第二种方法是求出部分量与总量的比较关系,再运用求一个数的几份之几是多少的方法求出这个部分量。2、巩固练习:P20“做一做”3、教学例3(1)读题理解题意后,提出“婴儿每分钟心跳的次数比青少年多”表示什么意思?(组织学生讨论,说说自己的理解)(2)引导学生将句子转化为“婴儿每分钟比青少年多跳的
25、次数是青少年每分钟心跳次数的”。着重让学生说说谁与谁比,把谁看作单位“1”。(3)出示线段图,学生讨论交流,结合例2的解题方法,学生独立列式计算后全班交流两种解题方法。 解法一:75757560135(次) 解法二:75(1)75135(次)4、巩固练习:P21“做一做”(列式后让学生说说算式各部分表示什么)三、练习1、练习五第2、3题:引导学生抓住题目中关键句子分析,找到谁与谁比,谁是表示单位“1”的量。2、练习五第3、4题:学生依据例题引导的解题方法,独立完成3、4题。四、布置作业 练习五第7、8、9、10题。教学追记: 例2和例3都是在理解和掌握了求一个数的几分之几是多少的问题的思路和方
26、法的基础上,学习解决稍复杂的求一个数的几分之几是多少的问题。教学中,我依然依据教学例1时教给学生的解答步骤进行分析解答,找出单位“1”,并画出线段图帮助理解。教学中,我引导学生紧扣线段图,直观地理解题意,并引导学生从数量和分率两方面入手,培养学生思维的多样性。但本堂课,老师讲解的部分似乎多了一些,留给学生讨论、练习的时间稍为稀薄。3、倒数的认识教学目标:1、引导学生通过体验、研究、类推等实践活动,理解倒数的意义,让学生经历提出问题、自探问题、应用知识的过程,自主总结出求倒数的方法。2、通过合作活动培养学生学会与人合作,愿与人交流的习惯。3、通过学生自行实施实践方案,培养学生自主学习和发展创新的
27、意识。教学重点: 理解倒数的意义和怎样求倒数。理解倒数的意义,掌握求倒数的方法。教学难点:掌握求倒数的方法教学过程:一、导入1、口算:(1)640(2) 3 802、今天我们一起来研究“倒数”,看看他们有什么秘密?出示课题:倒数的认识二、新授1、教学倒数的意义。(1)学生看书自学,组成研讨小组进行研究,然后向全班汇报。(2)学生汇报研究的结果:乘积是1的两个数互为倒数。(3)提示学生说清“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数)(3)互为倒数的两个数有什么特点?(两个数的分子、分母正好颠倒了位置)2、教学求倒数的方法。(1)写出的倒数: 求一个分数的倒
28、数,只要把分子(数字3闪烁后移至所求分数分母位置处)、分母(数字5闪烁后移至所求分数分子位置处)调换位置。(2)写出6的倒数:先把整数看成分母是1的分数,再交换分子和分母的位置。 6 3、教学特例,深入理解(1)1有没有倒数?怎么理解?(因为111,根据“乘积是1的两个数互为倒数”,所以1的倒数是1。)(2)0有没有倒数?为什么?(因为0与任何数相乘都不等于1,所以0没有倒数)3、巩固练习:课本24页“做一做”(1)学生独立解答,教师巡视。(2)汇报时有意识地让学有困难的学生说一说求倒数的方法。三、练习1、练习六第2题:同桌互说倒数。2、辨析练习:练习六第3题“判断题”。3、开放性训练。()(
29、)()()四、总结你已经知道了关于“倒数”的哪些知识?你联想到什么?还想知道什么?教学追记:倒数的认识一课,教学内容较为简单,学生通过预习、自学,完全可以自行理解本课的内容。针对本课的特点,教学中我放手给学生,让学生通过自学、讨论理解“倒数”的意义,而在这其中,有一些概念点犹为关键,如“互为”,因此我也适当的加以提问点拨。对于求倒数的方法,我同样给学生自主的空间,自学例题,按自己的理解、用自己的话概括出求一个数的倒数的方法。但对于“0”“1”的倒数这种特例,我并没有忽视它,而是充分发挥教师“导”的作用,帮助学生加强认识。4、整理和复习复习目标:1、使学生掌握分数乘法的计算方法,并能运用这个方法
30、进行相关计算。2、使学生能分辨清楚先乘后加减的运算顺序,并能熟练地应用乘法运算定律进行简便计算。3、引导学生准确地找到单位“1”,并能熟练地解答一步和二步的乘法应用题。复习重点:引导学生找准单位“1”,分析应用题的数量关系。复习难点:让学生正确、独立地分析应用题的数量关系。复习过程:一、复习分数乘法1、学生独立计算P26第1题,并思考式子的意义及计算法则。2、分数乘法的意义(1)分数乘整数的意义是什么?(表示几个相同加数的和或表示一个数的几倍是多少)(2)一个数乘分数的意义是什么?(表示一个数的几分之几是多少)3、分数乘法的计算法则(1)分数乘整数:把能约分的先约分,然后把整数与分子相乘,分母
31、不变。(2)分数乘分数:同样把能约分的先约分,然后用分子乘分子,分母乘分母。4、练习:练习七第1题。二、复习计算及简便计算1、复习乘加乘减的运算顺序:先算二级运算,再算一级运算,有括号的要先算小括号里面的,再算中括号里面的。2、复习乘法的运算定律:乘法交换律:ab=ba 乘法结合律:(ab)c=a(bc)乘法分配律:(ab)c=acbc3、 观察P26第2题,说说这三题适合运用什么运算定律?为什么?然后学生独立完成。4、 练习:练习七第4题。三、复习分数乘法应用题1、复习解答分数乘法应用题的步骤:(1)找到题目中的分率句,确定单位“1”。(2)根据题目中的数量关系,求出所要求的部分量。2、P2
32、6第3题(1)读题,分别找到两道题的单位“1”,并说说这两道题有何不同?(2)根据题意分析数量关系,然后列式计算,全班讲评。3、练习:练习七第6题。四、复习倒数1、复习倒数的意义:乘积是1的两个数互为倒数。2、互为倒数的两个数有什么特征?(分子、分母的位置刚好颠倒位置)1的倒数是多少?0有没有倒数?3、复习写一个数的倒数的方法:交换原来分子和分母的位置(注意强调如果是整数要先把它写成分母为1的分数,然后在交换分子和分母的位置。)4、练习:练习七第7题。五、练习练习七第2、3、5题(学生独立列式计算,指名板演,讲评时让学生说清是怎样思考的)第三单元 分数除法单元目标:1、理解并掌握分数除法的计算
33、方法,会进行分数除法计算。2、会解答已知一个数的几分之几是多少求这个数的实际问题。3、理解比的意义,知道比与分数、除法的关系,并能类推出比的基本性质。能够正确地化简比和求比值。4、能运用比的知识解决有关的实际问题。单元重点:一个数除以分数的意义以及计算方法,并会分数除法解决相关的问题。单元难点:一个数除以分数的计算法则的推导。1、 分数除法(1)分数除法的意义和整数除以分数教学目标:1、 通过实例,使学生知道分数除法的意义与整数除法的意义是相同的,并使学生掌握分数除以整数的计算法则。2、 动手操作,通过直观认识使学生理解整数除以分数,引导学生正确地总结出计算法则,能运用法则正确地进行计算。3、
34、 培养学生观察、比较、分析的能力和语言表达能力,提高计算能力。教学重点: 使学生理解算理,正确总结、应用计算法则。教学难点:使学生理解整数除以分数的算理。教学过程:一、复习1、复习整数除法的意义(1)引导学生回忆整数除法的计算法则:已知两个因数的积与其中一个因数,求另一个因数的运算。(2)根据已知的乘法算式:5630,写出相关的两个除法算式。(3056,3065)2、口算下面各题 3 6 二、新授1、教学例1(1)出示插图及乘法应用题,学生列式计算:1003300(克)(2)学生把这道乘法应用题改编成两道除法应用题,并解答。A、3盒水果糖重300克,每盒有多重? 3003100(克)B、300
35、克水果糖,每盒100克,可以装几盒? 3001003(盒)(3)将100克化成千克,300克化成千克,得出三道分数乘、除法算式。 3(千克) 3(千克) 33(盒)(4)引导学生通过整数题组和分数题组的对照,小组讨论后得出:分数除法的意义与整数除法相同,都是已知两个因数的积与其中一个因数,求另个一个因数。都是乘法的逆运算。2、巩固分数除法意义的练习:P28“做一做”3、教学例2(1)学生拿出课前准备好的纸,小组讨论操作,如何把这张纸的平均分成2份,并通过操作得出每份是这张纸的几分之几。(2)小组汇报操作过程,得出:将一张纸的平均分成2份,每份是这张纸的。425(3)引导学生数形结合,对照不同的
36、折法,说出两种不同的计算方法。 A、2 ,每份就是2个。B、2,每份就是的。(4)如果把这张纸的平均分成3份呢?让学生从上面两种方法中选择一种进行计算,通过操作对比,让学生发现第二种方法适用的范围更广。4、引导学生观察2和3两个算式,概括出分数除以整数的计算法则:分数除以整数,等于乘上这个整数的倒数。三、练习3 3 20 5 10 6 四、总结1、今天我们学习了哪些内容?(分数除法的意义及分数除以整数的计算法则)2、谁来把这两部分内容说一说?(2)一个数除以分数教学目标:1、在学生学习了分数除以整数、整数除以分数、一个数除以分数计算法则基础上,引导学生总结出分数除法的计算法则,能利用计算法则,
37、正确、迅速地进行分数除法的计算。2、培养学生的语言表达能力和抽象概括能力。 3、培养学生良好的计算习惯。教学重点:总结出一个数除以分数的计算法则,并抽象概括出分数除法的计算法则。教学难点:利用法则正确、迅速地进行计算,并能解决一些实际问题。教学过程:一、复习1、列式,说清数量关系 小明2小时走了6 km,平均每小时走多少千米?(速度路程时间)2、计算下面,直接写出得数 4 3 2 64 3 2 6二、新授1、默读例3,理解题意,列出算式:2 2、探索整数除以分数的计算方法(1)2如何计算?引导学生结合线段图进行理解。(2)先画一条线段表示1小时走的路程,怎么样表示小时走了2 km这个条件?(将
38、线段平均分成3份,其中2份表示的就是小时走的路程)1小时走了?千米?小时走2 km(3)引导学生讨论交流:已知小时走了2 km,要求1小时走了多少千米?可以先算什么,再算什么?(4)根据学生的回答把线段图补充完整,并板书出过程。 先求小时走了多少千米,也就是求2个,算式:2 再求3个小时走了多少千米,算式:23(5) 综合整个计算过程:22322、小结出计算法则:从上面这个推算过程,我们发现整数除以,分数等于用整数乘这个分数的倒数。3、计算,探索分数除以分数的计算方法(1)学生根据整数除以分数的计算方法,自己独立尝试分数除以分数的计算。 2(km)(2)学生用自己的方法来验证结果是否正确。4、
39、总结计算法则:无论是整数除以分数,还是分数除以分数,都可以转化成乘法来计算,也就是说除以一个不等于0的数,等于乘上这个数的倒数。三、练习1、P31“做一做”的第1、2题。2、练习八第2、4题。教学追记: 虽说现在的教材已经把意义淡化了,但我在教学中依然采用了整数与分数对比,乘法与除法对比的方式,揭示了分数除法的意义。针对新教材的特点,对于分数除法的意义,我只是让学生理解,并没有强调口述,而是重点让学生应用分数除法的意义,根据给出的一个乘法算式写出两道除法算式,由于有了整数的基础和前面对于意义的理解,学生掌握得也较顺利。在分数除以整数的教学上,我把学习的主动权交给学生,让他们动手操作、集思广益,
40、根据操作计算方法。于是学生们有的模仿分数乘整数的方法,分母不变,把分子除以整数;有的根据题意及直观操作,得出除以2也就是平均分成两份,每份就是原来的二分之一,因而除以2就是乘上2的倒数。对于学生的想法,我都充分予以肯定,并通过练习让学生比较,选出他们认为适用范围更广的方式。由于学生理解透彻了,所以后面分数除以分数和整数除以分数的教学上,学生轻而易己地就掌握了计算方法。(3)分数混合运算教学目标:1、通过观察、分析、使学生掌握分数四则混合运算的运算顺序,能应用计算法则较熟练地进行计算。2、 通过练习,培养学生的计算能力及初步的逻辑思维能力。3、通过观察、类推,使学生进一步理解整数四则混合运算的运
41、算定律在分数四则运算中同样适用,并能应用运算定律及有关性质进行简便运算。4、通过练习,培养学生观察、类推的思维能力和灵活计算的能力。教学重点:确定运算顺序再进行计算。教学难点:明确混合运算的顺序。教学过程:一、复习1、复习整数混合运算的运算顺序(1)在一个没有小括号的算式里,只有乘除法或加减法,应该从左往右依次计算;如果既有加减法又有乘除法,应该先算乘除法,后算加减法。(2)在一个有小括号的算式里,应该先算小括号里面的,后算小括号外面的。(3)在一个既有小括号又有中括号的算式里,应该先算小括号里面的,后算中括号里面的,最后算中括号外面的。2、说出下面各题的运算顺序。(1)428+639175
42、(2)1.8+1.5430.4(3)3.2(1.6+0.7)2.5 (4)7+(5.783.12)(41.239)二、新授1、教学例4(1)学生读题,明确已知条件及问题,尝试说说自己的解题思路。(2)根据学生的回答,归纳出两种思路:A、可以从条件出发思考,根据彩带长8m ,每朵花用m 彩带,可以先算出一共做了多少朵花。B、从问题入手想:要求小红还剩几多花,根据题意,应先求小红一共做了几朵花。(3)学生独立列出综合算式后,让他们说说运算顺序,再进行计算。2、巩固练习:P34“做一做”(1)学生独立完成第一题,然后全班校对。引导学生比较计算分数连除或连乘除的两种算法,通过比较,使学生发现统一约分后
43、再计算比分步计算简便。(2)学生读题理解题意,指名说说解题思路,再让学生独立列式计算。三、练习1、练习九第1题:前三题提倡学生选择统一成乘法的方法进行计算。2、练习九第2-4题(1)第2题:可以先求每层有多高,再求楼的楼板到地面的高度,但要注意引导学生意识到6楼楼板到地面的高度实际上只有5层楼的高度。(2)第3题可引导学生形成两种思路:A、先求每小时录入了这篇论文的几分之几,再求8小时可录入这篇论文的几分之几;B、先求8小时是3小时的几倍,再求8小时录入几分之几。(3)第4题同样有两种方法:A、可以先求一共能装多少袋,列式:240;B、可以先求装完的有多少千克,综合算式是240。四、布置作业 练习九第5-9题。教学追记:本堂课虽是应用题形式的例题,但实为分数混合运算的计算课,因而在课初始,我便从复习整数及小数的运算顺序入手,重点让学生回忆、熟悉运算顺序,然后再以例题为载体,让学生发现分数的运算顺序同整数、小数的运算顺序相同,继而配合课后练习加强计算的训练。2、解决问题(1)已知一个数的几分之几是多少求这个数的应用题教学目标:1、使学生学会掌握“已知一个数的几分之几是多少,求这个数”的应用题的解答方法,能熟练地列方程解答这类应用题。2、进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。教学重点: 弄清单位