1、等腰三角形等腰三角形本课内容本节内容2.3 我们前面已经学习了三角形的一些性我们前面已经学习了三角形的一些性质,那么等腰三角形除了具有一般三角形质,那么等腰三角形除了具有一般三角形的性质外,还具有哪些特殊的性质呢的性质外,还具有哪些特殊的性质呢?探究探究 任意画一个等腰三角形任意画一个等腰三角形ABC,其中,其中AB=AC,如图如图.作作ABC 关于顶角平分线关于顶角平分线AD所在直线的轴所在直线的轴反射,反射,由于由于1=2,AB=AC,因此:因此:D1 2射线射线AB的像是射线的像是射线AC,射线射线AC的像是射线的像是射线 ;线段线段AB的像是线段的像是线段AC,线段线段AC的像是线段的
2、像是线段 ;点点B的像是点的像是点C,点点C的像是点的像是点 ;线段线段BC的像是线段的像是线段CB.从而等腰三角形从而等腰三角形ABC关于直线关于直线 对称对称.ABABBAD由于点由于点D的像是点的像是点D,因此线段因此线段DB的像是线段的像是线段 ,从而从而AD是底边是底边BC上的上的 .由于射线由于射线DB的像是射线的像是射线DC,射线射线DA的像是射线的像是射线 ,因此因此BDA CDA=,从而从而AD是底边是底边BC上的上的 .由于射线由于射线BA的像是射线的像是射线CA,射线射线BC的像是射线的像是射线 ,因此因此B C.DC中线中线DA=90高高CB=结论结论由此得到等腰三角形
3、的性质定理:由此得到等腰三角形的性质定理:等腰三角形是轴对称图形,对称轴是顶角等腰三角形是轴对称图形,对称轴是顶角平分线所在的直线平分线所在的直线.等腰三角形的两底角相等等腰三角形的两底角相等(简称简称“等边对等边对等角等角”).结论结论 等腰三角形底边上的高等腰三角形底边上的高、中线中线及顶角平分及顶角平分线重合线重合(简称为简称为“三线合一三线合一”).).动脑筋动脑筋因为因为ABC是等边三角形,是等边三角形,所以所以AB=BC=AC,从而从而C=A=B.由三角形内角和定理可得:由三角形内角和定理可得:A=B=C=60.如图,如图,ABC是等边三角形,那么是等边三角形,那么A,B,C 的大
4、小之间有什么关系呢的大小之间有什么关系呢?由此得到等边三角形的如下性质:由此得到等边三角形的如下性质:等边三角形的三个内角相等,且都等于等边三角形的三个内角相等,且都等于60.结论结论 由于等边三角形是特殊的等腰三角形,由于等边三角形是特殊的等腰三角形,因此等边三角形是轴对称图形,它有三条对因此等边三角形是轴对称图形,它有三条对称轴,分别是三个内角的平分线所在的直线称轴,分别是三个内角的平分线所在的直线.例例1 已知:如图,在已知:如图,在ABC中,中,AB=AC,点,点D,E 在边在边BC上,且上,且AD=AE.求证:求证:BD=CE.举举例例证明证明 作作AFBC,垂足为点,垂足为点F,则
5、则AF是等腰三角形是等腰三角形ABC和等腰三角形和等腰三角形ADE底边上的高,也是底边上的中线底边上的高,也是底边上的中线.BF=CF,BF-DF=CF-EF,DF=EF,即即 BD=CE.F 如图的三角测平架中如图的三角测平架中,AB=AC,在在BC的中的中点点D挂一个重锤挂一个重锤,自然下垂自然下垂,调整架身调整架身,使点使点A恰好在恰好在铅铅锤锤线上线上.(1)AD与与BC是否垂直是否垂直,试说明理由试说明理由.(2)这时这时BC处于水平位置处于水平位置,为什么为什么?议一议议一议练习练习1.如图,在如图,在ABC中,中,AB=AC,AD为为BC边上边上 的高,的高,BAC=49,BC=
6、4,求,求BAD的度的度 数及数及DC的长的长.答:答:BAD=24.5,DC=2.2.如图,点如图,点P为等边三角形为等边三角形ABC的边的边BC上一上一 点,且点,且APD=80,AD=AP,求,求DPC 的度数的度数.答:答:DPC=20.我们知道我们知道,等腰三角形的两底角相等,反过来等腰三角形的两底角相等,反过来,两两个角相等的个角相等的三三角角形是等腰三角形吗形是等腰三角形吗?探究探究 如图,在如图,在ABC中,如果中,如果B=C,那么,那么AB与与AC之间有什么关系吗之间有什么关系吗?我测量后发现我测量后发现AB与与AC相等相等.3cm3cm事实上,如图,在事实上,如图,在ABC
7、中,中,B=C.沿过点沿过点A的直线把的直线把BAC对折,对折,得得BAC的平分线的平分线AD交交BC于点于点D,则则1=2.又又B=C,由三角形内角和的性质得由三角形内角和的性质得ADB=ADC.D12沿沿AD所在直线折叠,所在直线折叠,由于由于ADB=ADC,1=2,所以射线所以射线DB与射线与射线DC重合,重合,射线射线AB与射线与射线AC重合重合.从而点从而点B与点与点C重合,重合,于是于是AB=AC.结论结论有两个角相等的三角形是等腰三角形有两个角相等的三角形是等腰三角形(简称简称“等角对等边等角对等边”).结论结论三个角都是三个角都是60的三角形是等边三角形的三角形是等边三角形.由
8、此并且结合三角形内角和定理,还可由此并且结合三角形内角和定理,还可以得到等边三角形的判定定理:以得到等边三角形的判定定理:例例2 已知:如图,在已知:如图,在ABC中,中,AB=AC,点,点D,E 分别是分别是AB,AC上的点,且上的点,且DEBC.求证:求证:ADE为等腰三角形为等腰三角形.举举例例证明证明 AB=AC,B=C.又又 DEBC,ADE=B,AED=C.ADE=AED.于是于是ADE为等腰三角形为等腰三角形.有一个角是有一个角是60的等腰三角形是等边的等腰三角形是等边三角形吗三角形吗?为什么为什么?动脑筋动脑筋如图,在等腰三角形如图,在等腰三角形ABC中,中,AB=AC.由三角
9、形内角和定理得由三角形内角和定理得 A+B+C=180.如果顶角如果顶角A=60,则则B+C=180-60=120.又又 AB=AC,B=C.B=C=A=60.ABC是等边三角形是等边三角形.由此得到另一条等边三角形的判定定理:由此得到另一条等边三角形的判定定理:结论结论有一个角是有一个角是60的等腰三角形是等边三角形的等腰三角形是等边三角形例例3 已知:如图,已知:如图,ABC是等边三角形,点是等边三角形,点D,E 分别在分别在BA,CA的延长线上,且的延长线上,且AD=AE.求证:求证:ADE是等边三角形是等边三角形.举举例例证明证明 ABC是等边三角形,是等边三角形,BAC=B=C=60
10、.EAD=BAC=60,又又 AD=AE,ADE是等边三角形是等边三角形(有一个角是有一个角是60的等腰三角形是等边三角形的等腰三角形是等边三角形)练习练习1.已知:等腰三角形已知:等腰三角形ABC的底角的底角ABC和和 ACB的平分线相交于点的平分线相交于点O.求证:求证:OBC为等腰三角形为等腰三角形.ABCDEO证明证明ABC和和ACB的平分线相交于点的平分线相交于点O,ABD=DBC=,ACE=ECB=,12ABC12ACB DBC=ECB,OBC是等腰三角形是等腰三角形.又又 ABC是等腰三角形,是等腰三角形,ABC=ACB,ABCDEO2.已知:如图,已知:如图,CD平分平分ACB
11、,AEDC,AE 交交BC的延长线于点的延长线于点E,且,且ACE=60.求证:求证:ACE是等边三角形是等边三角形.证明证明CD平分平分ACB,在在ACE中,中,CAE=180-E-ACE=60 又又ACE=60,BCD=E=60,ACD=DCB,ACD=DCB=60,又又 AEDC,CAE=ACE=E=60 ACE是等边三角形是等边三角形.3.已知:如图已知:如图,AB=BC,CDE=120,DFBA,且,且DF平分平分CDE.求证:求证:ABC是等边三角形是等边三角形.证明证明 AB=BC,ABC是等边三角形是等边三角形.又又CDE=120,DF平分平分CDE.FDC=ABC=60,AB
12、C是等腰三角形,是等腰三角形,EDF=FDC=60,又又DFBA,中考中考 试题试题例例1 等腰三角形两边长分别是等腰三角形两边长分别是2cm和和5cm,则这个,则这个三角形周长为(三角形周长为()A.9cm B.12cm C.9cm或或12cm D.14cmB解析解析 另一边长为另一边长为2cm或或5cm,2,2,5不符合不符合三角形三边关系定理,故选三角形三边关系定理,故选5.周长为周长为5+5+2=12cm.中考中考 试题试题例例2 若等腰三角形中有一个角等于若等腰三角形中有一个角等于50,则这个等,则这个等腰三角形的顶角的度数为(腰三角形的顶角的度数为()A.50 B.80 C.65或
13、或50 D.50或或80解析解析 因为因为50可作为等腰三角形的一顶角或可作为等腰三角形的一顶角或一底角,故选一底角,故选D.D结结 束束湘教版湘教版SHUXUE八年级上八年级上本节内容1.5执教:黄亭市镇中学执教:黄亭市镇中学列方程解应用题的一般步骤列方程解应用题的一般步骤分析题中已知什么分析题中已知什么,求什么求什么.有哪些事物在什么方面产生关系。有哪些事物在什么方面产生关系。一个相等关系一个相等关系.(和(和/倍倍/不同方案间不变量的相等)不同方案间不变量的相等)设未知数设未知数(直接设,间接设直接设,间接设),),包括单位名称包括单位名称.把相等关系中各个量转化成代数式把相等关系中各个
14、量转化成代数式,从而列出方程从而列出方程.解方程解方程,求出未知数的值求出未知数的值(x=a).(x=a).代入方程检验。代入方程检验。检验检验所求解是否符合题意,写出答案。所求解是否符合题意,写出答案。审审设设列列找找答答解解回顾与复习A,B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg且A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,求这两种机器人每小时分别搬运多少原料?解:解:设设B型机器人每小时搬运型机器人每小时搬运 xkg,则,则A型机器人每小型机器人每小时搬运(时搬运(x+20)kg.800201000 xx由题意可知由题意可知方程
15、变形为:方程变形为:10001000 x=800(=800(x+20)+20)x=80=80检验检验:x=80代入代入x(x+20)中,中,它的值不等于它的值不等于0,x=80是原方程的根,并符合题意是原方程的根,并符合题意.答:答:B B型机器人每小时搬运型机器人每小时搬运80kg80kg,A A型机器人每小时搬运型机器人每小时搬运100kg.100kg.课前热身课前热身强调:既要检验所求的解强调:既要检验所求的解是否是原分式方程的解,是否是原分式方程的解,还要检验是否符合题意;还要检验是否符合题意;检验目的是检验目的是:(1):(1)是否是所列方是否是所列方程的解程的解;(2);(2)是否
16、满足实际意义是否满足实际意义.(1)审清题意;(2)设未知数(要有单位);(3)找出相等关系,列出方程;(4)解方程,并验根。(5)写出答案(要有单位)。例题讲解与练习例题讲解与练习例1.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,完成全部工程,哪个队的施工速度快?分析:甲队1个月完成总工程的 ,设乙队如果单独完成施工1个月能完成总工程的 ,那么甲队半个月完成总工程的 ,乙队半个月完成总工程的 ,两队半个月完成总工程的 .131x1612x1612x+1612x+13+=1得方程:得方程:解得:解得:x=1=1所以乙队的施工速
17、度快。所以乙队的施工速度快。例2 A,B两地相距135千米,两辆汽车从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车与大汽车的速度之比为5:2,求两车的速度。已知两边的速度之比为5:2,所以设大车的速度为2x千米/时,小车的速度为5x千米/时,而A、B两地相距135千米,则大车行驶时间 小时,小车行驶时间 小时,又知大车早出发5小时,比小车早到30分钟,实际大车行驶时间比小车行驶时间多4.5小时.2x1355x1352x1355x135-=5-0.5解:设大车的速度为解:设大车的速度为2 2x千米千米/时,小车的速度为时,小车的速度为5 5x千米千米/时,时,根据
18、题意得根据题意得解之得解之得 x=9=9经检验经检验x=9=9是原方程的解是原方程的解当当x=9=9时,时,2 2x=18=18,5 5x=45=45答:大车的速度为答:大车的速度为1818千米千米/时,时,小车的速度为小车的速度为4545千米千米/时时.例例3 3:农机厂到距工厂:农机厂到距工厂1515kmkm的向阳村检修农机,一部分的向阳村检修农机,一部分人骑自行车先走,过了人骑自行车先走,过了4040分钟,其余人乘汽车去,结果分钟,其余人乘汽车去,结果他们同时到达,已知汽车的速度是自行车的他们同时到达,已知汽车的速度是自行车的3 3倍,求两倍,求两车的速度。车的速度。分析:设自行车的速度
19、是分析:设自行车的速度是xkm/h,汽车的速度是,汽车的速度是3xkm/h请根据题意填写速度、时间、路程之间的关系表请根据题意填写速度、时间、路程之间的关系表速度速度(km/h)路程路程(km)时间(时间(h)自行车自行车 汽车汽车 x3x151515315找出等量关系。找出等量关系。列出方程。列出方程。汽车所用的时间自行车所用时间汽车所用的时间自行车所用时间 时时323215315=-借助表格分借助表格分析数量关系析数量关系 解答由学生完成。解答由学生完成。1 1、甲乙两人同时从、甲乙两人同时从A A地出发,骑自行车到地出发,骑自行车到B B地,已知两地,已知两地地ABAB的距离为的距离为3
20、030,甲每小时比乙多走,甲每小时比乙多走3 3,并且比乙,并且比乙先到先到4040分钟设乙每小时走分钟设乙每小时走x x,则可列方程为,则可列方程为()()2 2、某农场挖一条、某农场挖一条960m960m长的渠道,开工后每天比原计划长的渠道,开工后每天比原计划多挖多挖20m20m,结果提前,结果提前4 4天完成了任务。若设原计划每天天完成了任务。若设原计划每天挖挖xmxm,则根据题意可列出方程(,则根据题意可列出方程()960960204xx960960204xx960209604xx960209604xxBA1、一艘轮船在两个码头之间航行,顺水航行、一艘轮船在两个码头之间航行,顺水航行6
21、0km所所需时间与逆水航行需时间与逆水航行48km所需时间相同所需时间相同.已知水流的速已知水流的速度是度是2km/h,求轮船在静水中航行的速度,求轮船在静水中航行的速度.2 2、我军某部由驻地到距离、我军某部由驻地到距离3030千米的地方去执行任务,千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的由于情况发生了变化,急行军速度必需是原计划的1.51.5倍,才能按要求提前倍,才能按要求提前2 2小时到达,求急行军的速度。小时到达,求急行军的速度。3、甲、乙分别从相距36千米的A、B两地同时相向而行甲从A出发到1千米时发现有东西遗忘在A地,立即返回,取过东西后又立即从A向B行进
22、,这样二人恰好在AB中点处相遇,又知甲比乙每小时多走0.5千米,求二人速度7 7、一项工程,需要在规定日期内完成,如果甲队独做,一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定恰好如期完成,如果乙队独做,就要超过规定3 3天,现在天,现在由甲、乙两队合作由甲、乙两队合作2 2天,剩下的由乙队独做,也刚好在规天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?定日期内完成,问规定日期是几天?6、甲、乙两人做某种机器零件,已知甲每小时比乙多、甲、乙两人做某种机器零件,已知甲每小时比乙多做做6个,甲做个,甲做90个零件所用的时间和乙做个零件所用的时间
23、和乙做60个零件所用个零件所用时间相等,求甲、乙每小时各做多少个零件?时间相等,求甲、乙每小时各做多少个零件?4 4.某班学生到距学校某班学生到距学校1212千米的烈士陵园扫墓千米的烈士陵园扫墓,一部分人一部分人骑自行车先行骑自行车先行,经经0.50.5时后时后,其余的人乘汽车出发其余的人乘汽车出发,结果结果他们同时到达他们同时到达.已知汽车的速度是自行车的已知汽车的速度是自行车的3 3倍倍,求自行求自行车和汽车的速度车和汽车的速度.5.某农场开挖一条长某农场开挖一条长960米的渠道,开工后工作效率米的渠道,开工后工作效率比计划提高比计划提高50%,结果提前,结果提前4天完成任务,原计划每天天
24、完成任务,原计划每天挖多少米?挖多少米?1.甲、乙两人做某种机器零件,已知甲每小时比乙多做甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做个,甲做90个零件所用的时间和乙做个零件所用的时间和乙做60个零件所用时个零件所用时间相等,求甲、乙每小时各做多少个零件?间相等,求甲、乙每小时各做多少个零件?2.甲、乙两人练习骑自行车,已知甲每小时比乙甲、乙两人练习骑自行车,已知甲每小时比乙多走多走6千米,甲骑千米,甲骑90千米所用的时间和乙起骑千米所用的时间和乙起骑60千千米所用时间相等,求甲、乙每小时各骑多少千米?米所用时间相等,求甲、乙每小时各骑多少千米?3.甲、乙两种商品,已知甲的价格每件
25、比乙多甲、乙两种商品,已知甲的价格每件比乙多6元,买甲元,买甲90件所用的钱和买乙件所用的钱和买乙60件所用钱相等,件所用钱相等,求甲、乙每件商品的价格各多少元?求甲、乙每件商品的价格各多少元?下面三个问题有什么区别和联系?下面三个问题有什么区别和联系?小结小结 列分式方程解应用题的一般步骤:列分式方程解应用题的一般步骤:1.审审:分析题意分析题意,找出数量关系和相等关系找出数量关系和相等关系.2.设设:选择恰当的未知数选择恰当的未知数,注意单位和语言完整注意单位和语言完整.3.列列:根据数量和相等关系根据数量和相等关系,正确列出代数式和方程正确列出代数式和方程.4.解解:认真仔细认真仔细.5
26、.验验:有有两次两次检验检验.6.答答:注意单位和语言完整注意单位和语言完整.且答案要生活化且答案要生活化.检验目的是检验目的是:(1)是否是所列方是否是所列方程的解程的解;(2)是否满足实际意义是否满足实际意义.作业:作业:P36P36练习练习1 1、P36 A 2P36 A 2、4 4湘教版湘教版SHUXUE八年级上八年级上本节内容1.5执教:黄亭市镇中学执教:黄亭市镇中学列方程解应用题的一般步骤列方程解应用题的一般步骤分析题中已知什么分析题中已知什么,求什么求什么.有哪些事物在什么方面产生关系。有哪些事物在什么方面产生关系。一个相等关系一个相等关系.(和(和/倍倍/不同方案间不变量的相等
27、)不同方案间不变量的相等)设未知数设未知数(直接设,间接设直接设,间接设),),包括单位名称包括单位名称.把相等关系中各个量转化成代数式把相等关系中各个量转化成代数式,从而列出方程从而列出方程.解方程解方程,求出未知数的值求出未知数的值(x=a).(x=a).代入方程检验。代入方程检验。检验检验所求解是否符合题意,写出答案。所求解是否符合题意,写出答案。审审设设列列找找答答解解回顾与复习A,B两种型号机器人搬运原料,已知A型机器人比B型机器人每小时多搬运20kg且A型机器人搬运1000kg所用时间与B型机器人搬运800kg所用时间相等,求这两种机器人每小时分别搬运多少原料?解:解:设设B型机器
28、人每小时搬运型机器人每小时搬运 xkg,则,则A型机器人每小型机器人每小时搬运(时搬运(x+20)kg.800201000 xx由题意可知由题意可知方程变形为:方程变形为:10001000 x=800(=800(x+20)+20)x=80=80检验检验:x=80代入代入x(x+20)中,中,它的值不等于它的值不等于0,x=80是原方程的根,并符合题意是原方程的根,并符合题意.答:答:B B型机器人每小时搬运型机器人每小时搬运80kg80kg,A A型机器人每小时搬运型机器人每小时搬运100kg.100kg.课前热身课前热身强调:既要检验所求的解强调:既要检验所求的解是否是原分式方程的解,是否是
29、原分式方程的解,还要检验是否符合题意;还要检验是否符合题意;检验目的是检验目的是:(1):(1)是否是所列方是否是所列方程的解程的解;(2);(2)是否满足实际意义是否满足实际意义.(1)审清题意;(2)设未知数(要有单位);(3)找出相等关系,列出方程;(4)解方程,并验根。(5)写出答案(要有单位)。例题讲解与练习例题讲解与练习例1.两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,完成全部工程,哪个队的施工速度快?分析:甲队1个月完成总工程的 ,设乙队如果单独完成施工1个月能完成总工程的 ,那么甲队半个月完成总工程的 ,乙队半
30、个月完成总工程的 ,两队半个月完成总工程的 .131x1612x1612x+1612x+13+=1得方程:得方程:解得:解得:x=1=1所以乙队的施工速度快。所以乙队的施工速度快。例2 A,B两地相距135千米,两辆汽车从A开往B,大汽车比小汽车早出发5小时,小汽车比大汽车晚到30分钟,已知小汽车与大汽车的速度之比为5:2,求两车的速度。已知两边的速度之比为5:2,所以设大车的速度为2x千米/时,小车的速度为5x千米/时,而A、B两地相距135千米,则大车行驶时间 小时,小车行驶时间 小时,又知大车早出发5小时,比小车早到30分钟,实际大车行驶时间比小车行驶时间多4.5小时.2x1355x13
31、52x1355x135-=5-0.5解:设大车的速度为解:设大车的速度为2 2x千米千米/时,小车的速度为时,小车的速度为5 5x千米千米/时,时,根据题意得根据题意得解之得解之得 x=9=9经检验经检验x=9=9是原方程的解是原方程的解当当x=9=9时,时,2 2x=18=18,5 5x=45=45答:大车的速度为答:大车的速度为1818千米千米/时,时,小车的速度为小车的速度为4545千米千米/时时.例例3 3:农机厂到距工厂:农机厂到距工厂1515kmkm的向阳村检修农机,一部分的向阳村检修农机,一部分人骑自行车先走,过了人骑自行车先走,过了4040分钟,其余人乘汽车去,结果分钟,其余人
32、乘汽车去,结果他们同时到达,已知汽车的速度是自行车的他们同时到达,已知汽车的速度是自行车的3 3倍,求两倍,求两车的速度。车的速度。分析:设自行车的速度是分析:设自行车的速度是xkm/h,汽车的速度是,汽车的速度是3xkm/h请根据题意填写速度、时间、路程之间的关系表请根据题意填写速度、时间、路程之间的关系表速度速度(km/h)路程路程(km)时间(时间(h)自行车自行车 汽车汽车 x3x151515315找出等量关系。找出等量关系。列出方程。列出方程。汽车所用的时间自行车所用时间汽车所用的时间自行车所用时间 时时323215315=-借助表格分借助表格分析数量关系析数量关系 解答由学生完成。
33、解答由学生完成。1 1、甲乙两人同时从、甲乙两人同时从A A地出发,骑自行车到地出发,骑自行车到B B地,已知两地,已知两地地ABAB的距离为的距离为3030,甲每小时比乙多走,甲每小时比乙多走3 3,并且比乙,并且比乙先到先到4040分钟设乙每小时走分钟设乙每小时走x x,则可列方程为,则可列方程为()()2 2、某农场挖一条、某农场挖一条960m960m长的渠道,开工后每天比原计划长的渠道,开工后每天比原计划多挖多挖20m20m,结果提前,结果提前4 4天完成了任务。若设原计划每天天完成了任务。若设原计划每天挖挖xmxm,则根据题意可列出方程(,则根据题意可列出方程()960960204x
34、x960960204xx960209604xx960209604xxBA1、一艘轮船在两个码头之间航行,顺水航行、一艘轮船在两个码头之间航行,顺水航行60km所所需时间与逆水航行需时间与逆水航行48km所需时间相同所需时间相同.已知水流的速已知水流的速度是度是2km/h,求轮船在静水中航行的速度,求轮船在静水中航行的速度.2 2、我军某部由驻地到距离、我军某部由驻地到距离3030千米的地方去执行任务,千米的地方去执行任务,由于情况发生了变化,急行军速度必需是原计划的由于情况发生了变化,急行军速度必需是原计划的1.51.5倍,才能按要求提前倍,才能按要求提前2 2小时到达,求急行军的速度。小时到
35、达,求急行军的速度。3、甲、乙分别从相距36千米的A、B两地同时相向而行甲从A出发到1千米时发现有东西遗忘在A地,立即返回,取过东西后又立即从A向B行进,这样二人恰好在AB中点处相遇,又知甲比乙每小时多走0.5千米,求二人速度7 7、一项工程,需要在规定日期内完成,如果甲队独做,一项工程,需要在规定日期内完成,如果甲队独做,恰好如期完成,如果乙队独做,就要超过规定恰好如期完成,如果乙队独做,就要超过规定3 3天,现在天,现在由甲、乙两队合作由甲、乙两队合作2 2天,剩下的由乙队独做,也刚好在规天,剩下的由乙队独做,也刚好在规定日期内完成,问规定日期是几天?定日期内完成,问规定日期是几天?6、甲
36、、乙两人做某种机器零件,已知甲每小时比乙多、甲、乙两人做某种机器零件,已知甲每小时比乙多做做6个,甲做个,甲做90个零件所用的时间和乙做个零件所用的时间和乙做60个零件所用个零件所用时间相等,求甲、乙每小时各做多少个零件?时间相等,求甲、乙每小时各做多少个零件?4 4.某班学生到距学校某班学生到距学校1212千米的烈士陵园扫墓千米的烈士陵园扫墓,一部分人一部分人骑自行车先行骑自行车先行,经经0.50.5时后时后,其余的人乘汽车出发其余的人乘汽车出发,结果结果他们同时到达他们同时到达.已知汽车的速度是自行车的已知汽车的速度是自行车的3 3倍倍,求自行求自行车和汽车的速度车和汽车的速度.5.某农场
37、开挖一条长某农场开挖一条长960米的渠道,开工后工作效率米的渠道,开工后工作效率比计划提高比计划提高50%,结果提前,结果提前4天完成任务,原计划每天天完成任务,原计划每天挖多少米?挖多少米?1.甲、乙两人做某种机器零件,已知甲每小时比乙多做甲、乙两人做某种机器零件,已知甲每小时比乙多做6个,甲做个,甲做90个零件所用的时间和乙做个零件所用的时间和乙做60个零件所用时个零件所用时间相等,求甲、乙每小时各做多少个零件?间相等,求甲、乙每小时各做多少个零件?2.甲、乙两人练习骑自行车,已知甲每小时比乙甲、乙两人练习骑自行车,已知甲每小时比乙多走多走6千米,甲骑千米,甲骑90千米所用的时间和乙起骑千
38、米所用的时间和乙起骑60千千米所用时间相等,求甲、乙每小时各骑多少千米?米所用时间相等,求甲、乙每小时各骑多少千米?3.甲、乙两种商品,已知甲的价格每件比乙多甲、乙两种商品,已知甲的价格每件比乙多6元,买甲元,买甲90件所用的钱和买乙件所用的钱和买乙60件所用钱相等,件所用钱相等,求甲、乙每件商品的价格各多少元?求甲、乙每件商品的价格各多少元?下面三个问题有什么区别和联系?下面三个问题有什么区别和联系?小结小结 列分式方程解应用题的一般步骤:列分式方程解应用题的一般步骤:1.审审:分析题意分析题意,找出数量关系和相等关系找出数量关系和相等关系.2.设设:选择恰当的未知数选择恰当的未知数,注意单位和语言完整注意单位和语言完整.3.列列:根据数量和相等关系根据数量和相等关系,正确列出代数式和方程正确列出代数式和方程.4.解解:认真仔细认真仔细.5.验验:有有两次两次检验检验.6.答答:注意单位和语言完整注意单位和语言完整.且答案要生活化且答案要生活化.检验目的是检验目的是:(1)是否是所列方是否是所列方程的解程的解;(2)是否满足实际意义是否满足实际意义.作业:作业:P36P36练习练习1 1、P36 A 2P36 A 2、4 4