《高数双语》课件section 9.4.pptx

上传人(卖家):momomo 文档编号:5897840 上传时间:2023-05-14 格式:PPTX 页数:13 大小:416.44KB
下载 相关 举报
《高数双语》课件section 9.4.pptx_第1页
第1页 / 共13页
《高数双语》课件section 9.4.pptx_第2页
第2页 / 共13页
《高数双语》课件section 9.4.pptx_第3页
第3页 / 共13页
《高数双语》课件section 9.4.pptx_第4页
第4页 / 共13页
《高数双语》课件section 9.4.pptx_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、Section 9.4FermatJacobi,Jakob 2Partial Derivatives and Total Differentials of Multivariable Composite FunctionsTheorem are bothSuppose that(,)uu x y and(,)vv x y(,).u vThen the compositedifferentiable at the corresponding point (,),(,)zf u x y v x y(,)x yis also differentiable at the point function

2、isdifferentiable at the point while the function(,)zf u v(,),x yand its total differential is.zuzvzuzvdzdxdyu xvxu yvy and.v u then the functions u and v have corresponding incrementsProof Let the increments of the variables x and y be and,y x 3Partial Derivatives and Total Differentials of Multivar

3、iable Composite FunctionsProof(continued)zuzvzuzvdzdxdyu xvxu yvy Since u and v are both differentiable at(,),x y2(),vvvxyoxy 1(),uuuxyoxy Since f is differentiable at the22()().xy where point(,),u vz 22()().zzuvouvuv corresponding4Partial Derivatives and Total Differentials of Multivariable Composi

4、te FunctionsProof(continued)Then,we compose the functions u and v into the function f and zuzvzuzvzxyu xvxu yvy where 2212()()()().zzooouvuv Now,we need only verify that the a is a higher-order infinitesimalThat is0lim0.2(),vvvxyoxy 1(),uuuxyoxy w.r.t.5Partial Derivatives and Total Differentials of

5、Multivariable Composite FunctionsProof(continued)Notice thatSince 22222222()()()()()().()()ouvouvuvuv 1,uuxy1|()|ouxuyxy|u Thus then,|u is bounded.|v Similarly,is also bounded.This implies the result.2222()()uvuv is bounded.2212()()()()zzooouvuv 6Partial Derivatives and Total Differentials of Multiv

6、ariable Composite Functionszuzvzuzvdzdxdyu xvxu yvy By the formula we know that,zzuzvxu xvx .zzuzvyu yvy and12(,),1,2,.,iinuu xxximMore generally,if 12(,)myf u uu are both differentiable,then the composite function is also differentiable,1212nnyyydydxdxdxxxxwhere1212,1,2,.mjjjmjuuuyyyyjnxuxuxux 7Par

7、tial Derivatives and Total Differentials of Multivariable Composite FunctionsSolutionFindExample(,)zf u v Letwhere is differentiable.,.zzxy(,),zf xy xy(,)zf xy xy is differentiable becauseThe composite function Then,we havevxy uxy andare both differentiable.zx ffyuvfufvuxvxzy fufvuyvyffxuv12 fyf12 f

8、xf8Partial Derivatives and Total Differentials of Multivariable Composite FunctionsExampleFindLetwhere is differentiable.2(,sin),zf xx Solution 2(,sin)zf xx is differentiable.It is obvious that the function21212()(sin)2cos.dzd xdxffxfxfdxdxdxThen,.dzdxfFinish.9Partial Derivatives and Total Different

9、ials of Multivariable Composite FunctionsExampleProve thatLetwhere is derivable.22(),uxy Proof 22()uxy as a composite functionRegard the functionfunction composed by 22.zxyand()uz Derivation with respect to x and y respectively gives()2,uzyy ()2,uzxx so that0.uuxyyx0.uuxyyx 2()2()xyzxyz Finish.10Par

10、tial Derivatives and Total Differentials of Multivariable Composite FunctionsExample Letwhere the second order partial derivatives(,),zf u x y If of the function f are continuous with respect to each variable.,yuxe find 2.zy x We have Solution zx fufuxx12.yf efwe have12(,),(,),gf u x y hfu x yUsing

11、111312123().yyyyf xefef ef xef2zy x ()ygehy yyghegeyyPartial Derivatives and Total Differentials of Multivariable Composite FunctionsExampleThe second order partial derivatives f,g are continuous with respect to each variable,1)(,),zf u v ux vxy findzx .zy andffyuvfufvuxvxzy fufvuyvy0ffxuv12fyf2xf z

12、x 1122)(,),sin,zg u x y uxy find2zy x 2.zx y and12Invariance of the total differential formRational operation rules for total differentials2();();1(),0.d uvdudvd uvvduudvudvduudv vvvExample Find().d xyyzxz13Rational operation rules for total differentialsExampleis differentiable,find the partial derivatives of(,)f u vIf the function,.x yzfy x Solution By the invariance of the total differential form we havedz121222111,yffdxffdyyxyx then1221,zyffxyx 12211.zffyyx 12xyf df dyx1222ydxxdyxdyydxffyx

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(《高数双语》课件section 9.4.pptx)为本站会员(momomo)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|