1、第一章 温度1-1 在什么温度下,以下一对温标给出相同的读数:(1)华氏温标和摄氏温标;(2)华氏温标和热力学温标;(3)摄氏温标和热力学温标?解:(1) 当 时,即可由 ,解得 故在 时 (2)又 当 时 那么即 解得: 故在 时, (3) 若 那么有 显而易见此方程无解,因此不存在 的情形。1-2 定容气体温度计的测温泡浸在水的三相点槽内时,其中气体的压强为50mmHg。 (1)用温度计测量300K的温度时,气体的压强是多少? (2)当气体的压强为68mmHg时,待测温度是多少?解:关于定容气体温度计可知: (1) (2) 1-3 用定容气体温度计测得冰点的理想气体温度为,试求温度计内的气
2、体在冰点时的压强与水的三相点时压强之比的极限值。解:依照 已知 冰点 。1-4 用定容气体温度计测量某种物质的沸点。 原先测温泡在水的三相点时,其中气体的压强 ;当测温泡浸入待测物质中时,测得的压强值为 ,当从测温泡中抽出一些气体,使 减为200mmHg时,从头测得 ,当再抽出一些气体使 减为100mmHg时,测得 .试确信待测沸点的理想气体温度.解:依照 从理想气体温标的概念: 依以上两次所测数据,作T-P图看趋势得出 时,T约为亦即沸点为. 题1-4图1-5 铂电阻温度计的测量泡浸在水的三相点槽内时,铂电阻的阻值为欧姆。当温度计的测温泡与待测物体接触时,铂电阻的阻值为欧姆。试求待测物体的温
3、度,假设温度与铂电阻的阻值成正比,并规定水的三相点为。解:依题给条件可得 则 故 1-6 在历史上,对摄氏温标是如此规定的:假设测温属性X随温度t做线性转变 ,即,并规定冰点为 ,汽化点为 。设 和 别离表示在冰点和汽化点时X的值,试求上式中的常数a和b。解: 由题给条件可知 由(2)-(1)得 将(3)代入(1)式得1-7 水银温度计浸在冰水中时,水银柱的长度为4.0cm;温度计浸在滚水中时,水银柱的长度为24.0cm。(1) 在室温 时,水银柱的长度为多少?(2) 温度计浸在某种沸腾的化学溶液中时,水银柱的长度为25.4cm,试求溶液的温度。解:设水银柱长 与温度 成线性关系: 当 时,
4、代入上式 当 , (1) (2) 1-8 设必然容气体温度计是按摄氏温标刻度的,它在冰点和汽化点时,其中气体的压强别离为 和 。(1)当气体的压强为 时,待测温度是多少?(2)当温度计在沸腾的硫中时(硫的沸点为 ),气体的压强是多少?解:解法一 设P与t为线性关系: 由题给条件可知:当 时有当 时得: 由此而得(1) (2) 时解法二 假设设t与P为线性关系 利用第六题公式可得:由此可得:(1) 时 (2) 时 1-9 当热电偶的一个触点维持在冰点,另一个触点维持任一摄氏温度t时,其热电动势由下式确信: 式中 题1-9题(1) 题1-9图(2)题1-9图(3)(1) 试计算当 和 时热电动势
5、的值,并在此范围内作 图。(2) 设用 为测温属性,用以下线性方程来概念温标 : 并规定冰点为 ,汽化点为 ,试求出a和b的值,并画出 图。(3) 求出与 和 对应的 值,并画出 图(4) 试比较温标t和温标 。解:令 (1) (2) 在冰点时 ,汽化点 ,而 , 已知解得: (3) 当 时 当 时 当 时 当 时 (4)温标t和温标 只有在汽化点和沸点具有相同的值, 随 线性转变,而t不随 线性转变,因此用 作测温属性的 温标比t温标优越,计算方便,但日常所用的温标是摄氏温标,t与 虽非线性转变,却能直接反映熟知的温标,因此各有所长。1-10 用L表示液体温度计中液柱的长度。概念温标 与L之
6、间的关系为 。式中的a、b为常数,规定冰点为 ,汽化点为 。设在冰点时液柱的长度为 ,在汽化点时液柱的长度,试求 到 之间液柱长度差和 到 之间液柱的长度差。解:由题给条件可得: (1) (2)解联立方程(1)(2)得: 则 1-11 概念温标 与测温属性X之间的关系为 ,其中K为常数。(1)设X为定容稀薄气体的压强,并假定在水的三相点为 ,试确信温标 与热力学温标之间的关系。(2)在温标 中,冰点和汽化点各为多少度?(3)在温标 中,是不是存在0度?解:(1)依照理想气体温标 ,而X=P (1)由题给条件,在三相点时 代入式代入(1)式得: (2)(2)冰点 代入(2)式得汽化点 代入(2)
7、式得(3)假设 ,那么 从数学上看, 不小于0,说明 有0度存在,但事实上,在此温度下,稀薄汽体可能已液化,0度不能实测。1-12 一立方容器,每边长20cm其中贮有 , 的气体,当把气体加热到 时,容器每一个壁所受到的压力为多大?解:对必然质量的理想气体其状态方程为因 ,而 故 1-13 必然质量的气体在压强维持不变的情形下,温度由 升到 时,其体积将改变百分之几?解:依照方程 那么体积改变的百分比为 1-14 一氧气瓶的容积是 ,其中氧气的压强是 ,规定瓶内氧气压强降到 时就得充气,以避免混入其他气体而需洗瓶,今有一玻璃室,天天需用 氧气 ,问一瓶氧气能用几天。解:先作两点假设,(1)氧气
8、可视为理想气体,(2)在利用氧气进程中温度不变。那么:由 可有 天天用掉的氧气质量为 瓶中剩余氧气的质量为 天1-15 水银气压计中混进了一个空气泡,因此它的读数比实际的气压小,当精准的气压计的读数为 时,它的读数只有 。现在管内水银面到管顶的距离为 。问当此气压计的读数为 时,实际气压应是多少。设空气的温度维持不变。题1-15图解:设管子横截面为S,在气压计读数为 和 时,管内空气压强别离为 和 ,依照静力平稳条件可知,由于T、M不变依照方程 有 ,而 1-16 截面为 的粗细均匀的U形管,其中贮有水银,高度如图1-16所示。今将左侧的上端封锁年,将其右边与真空泵相接,问左侧的水银将下降多少
9、?设空气的温度维持不变,压强 题1-16图解:依照静力平均条件,右端与大气相接时,左端的空气压强为大气压;当右端与真空泵相接时,左端空气压强为 (两管水银柱高度差)设左端水银柱下降 常数 即 整理得 : (舍去)1-17 图1-17所示为一粗细均匀的J形管,其左端是封锁的,右边和大气相通,已知大气压强为 ,今从J形管右边灌入水银,问当右边灌满水银时,左侧水银柱有多高,设温度维持不变,空气可看做理想气体。题1-17图解:设从J形管右边灌满水银时,左侧水银柱高为h。假设管子的直径与 相较很小,可忽略不计,因温度不变,那么对封锁在左侧的气体有: 而 (S为管的截面积)解得: (舍去) 1-18 如图
10、1-18所示,两个截面相同的连通管,一为开管,一为闭管,原先开管内水银下降了 ,问闭管内水银面下降了多少?设原先闭管内水银面上空气柱的高度R和大气压强为 ,是已知的。 题1-18图 解:设截面积为S,原闭管内气柱长为R大气压为P闭管内水银面下降后,其内部压强为。对闭管内必然质量的气体有: 以水银柱高度为压强单位: 取正值,即得 1-19 一端封锁的玻璃管长 ,贮有空气,气体上面有一段长为 的水银柱,将气柱封住,水银面与管口对齐,今将玻璃管的开口端用玻璃片盖住,轻轻倒转后再除去玻璃片,因此使一部份水银漏出。当大气压为 时,六在管内的水银柱有多长?解: 题1-19图设在正立情形下管内气体的压强为
11、,以水银柱高度表示压强,倒立时,管内气体的压强变成 ,水银柱高度为 由于在倒立进程温度 不变, 解之并取 的值得 1-20 求氧气在压强为 ,温度为 时的密度。解:已知氧的密度 1-21 容积为 的瓶内贮有氢气,因开关损坏而漏气,在温度为 时,气压计的读数为 。过了些时候,温度上升为 ,气压计的读数未变,问漏去了多少质量的氢。解:当 时,容器内氢气的质量为: 当 时,容器内氢气的质量为: 故漏去氢气的质量为1-22 一打气筒,每打一次可将原先压强为 ,温度为 ,体积 的空气紧缩到容器内。设容器的容积为 ,问需要打几回气,才能使容器内的空气温度为 ,压强为 。解:打气后压强为: ,题上未说原先容
12、器中的气体情形,可设原先容器中没有空气,设所需打气次数为 ,那么得: 次1-23 一气缸内贮有理想气体,气体的压强、摩尔体积和温度别离为 、 和 ,现将气缸加热,使气体的压强和体积同时增大。设在这进程中,气体的压强 和摩尔体积 知足以下关系式: 其中 为常数(1)求常数 ,将结果用 , 和普适气体常数 表示。(2)设 ,当摩尔体积增大到 时,气体的温度是多高?解:依照 理想气体状态方程 和进程方程 有(1) (2) 而 ,那么 1-24 图1-24为测量低气压的麦克劳压力计的示用意,使压力计与待测容器相连,把贮有水银的瓶R缓缓上提,水银进入容器B,将B中的气体与待测容器中的气体隔开。继续上提瓶
13、R,水银就进入两根相同的毛细管 和 内,当 中水银面的高度差 ,设容器的容积为 ,毛细管直径 ,求待测容器中的气压。 题1-24图解:设 管体积 ,当水银瓶R上提时,水银上升到虚线处,现在B内气体压强与待测容器的气体压强相等。以B内气体为研究对象,当R继续上提后, 内气体压强增大到 ,由于温度可视为不变,那么依照玻-马定律,有 由于 1-25 用图1-25所示的容积计测量某种轻矿物的操作步骤和实验数据如下:(1)打开活拴K,使管AB和罩C与大气相通。上下移动D,使水银面在n处。(2)关闭K,往上举D,使水银面达到m处。这时测得B、D两管内水银面的高度差 。(3)打开K,把400g的矿物投入C中
14、使水银面重密与对齐,关闭K。(4)往上举D,使水银面从头抵达m处,这时测得B、D两管内水银面的高度差 已知罩C和AB管的容积共为 ,求矿物的密度。题1-25图解:设容器B的容积为 ,矿物的体积为 , 为大气压强,当打开K时,罩内压强为 ,步骤(2)中罩内压强为 ,步骤(4)中,罩内压强为 ,假设操作进程中温度可视不变,那么依照玻意马定律知未放矿石时: 放入后: 解联立方程得 1-26 一抽气机转速 转/分,抽气机每分钟能够抽出气体 ,设容器的容积 ,问通过量少时刻后才能使容器的压强由 降到 。解:设抽气机每转一转时能抽出的气体体积为 ,那么 当抽气机转过一转后,容器内的压强由 降到 ,忽略抽气
15、进程中压强的转变而近似以为抽出压强为 的气体 ,因此有 ,当抽气机转过两转后,压强为当抽气机转过n转后,压强 设当压强降到 时,所需时刻为 分,转数 1-27 按重量计,空气是由 的氮, 的氧,约 的氩组成的(其余成份很少,能够忽略),计算空气的平均分子量及在标准状态下的密度。解:设总质量为M的空气中,氧、氮、氩的质量别离为 。氧、氮、氩的分子量别离为 。空气的摩尔数那么空气的平均摩尔质量为即空气的平均分子量为。空气在标准状态下的密度1-28 把 的氮气压入一容积为 的容器,容器中原先已充满同温同压的氧气。试求混合气体的压强和各类气体的分压强,假定容器中的温度维持不变。解:依照道尔顿分压定律可
16、知 又由状态方程 且温度、质量M不变。1-29 用排气取气法搜集某种气体(见图1-29),气体在温度为 时的饱和蒸汽压为 ,试求此气体在 干燥时的体积。 题1-29图解:容器内气体由某气体两部份组成,令某气体的压强为 那么其总压强 干燥时,即气体内不含水汽,假设某气体的压强也为 其体积V,那么依照PV=恒量(T、M必然)有 1-30 通常称范德瓦耳斯方程中 一项为内压强,已知范德瓦耳斯方程中常数a,对二氧化碳和氢别离为 和 ,试计算这两种气体在 ,和时的内压强, 解:依照内压强公式 ,设 内压强为 的内压强 。当 时,当 时当 时1-31 一摩尔氧气,压强为 ,体积为 ,其温度是多少?解:由于
17、体积 较小,而压强较大,因此利用状态方程那么必然显现较大的误差,因此咱们用范氏方程求解式中 1-32 试计算压强为 ,密度为 的氧气的温度,已知氧气的范德瓦耳斯常数为 , 。解:设氧气的质量为 ,所占的体积为 ,那么有 依照范氏方程 那么有 代入数据得: 1-33 用范德瓦耳斯方程计算密闭于容器内质量 的二氧化碳的压强。已知容器的容积 ,气体的温度 。试计算结果与用理想气体状态方程计算结果相较较。已知二氧化碳的范德瓦斯常数为 , 。解:(1)应用范氏方程计算:得出: 代入数据计算得:(2)应用理想气体状态方程:小结:应用两种方程所得的P值是不同的,用范氏方程所得结果小于理想气体方程所得的P值。其缘故是由于理想气体状态方程忽略分子间作使劲和气体分子本身所占的体积,因此使得计算的压壮大于真实气体的压强。