1、 - 1 - 广东省中山市普通高中 2017-2018学年高一数学 1 月月考试题 时间 120分钟,满分 150分 . 第 I卷 (共 60 分 ) 一、选择题:本大题共 12 小题,每小题 5 分共 60 分在每小题给出的四个选项中,只有一个是正确的,请将正确的选项选出来涂在答题卡相应的位置 1设全集 I 0, 1, 2, 3,集合 A 0, 1, 2,集合 B 2, 3,则 CIA CIB等于 A 0 B 0, 1 C 0, 1, 3 D 0, 1, 2, 3 2下列所给出的函数中,是幂函数的是 A 3xy ? B 3?xy C 32xy? D 13?xy 3如下图是定义在闭区间 -5,
2、5上的函数 ()y f x? 图象 ,该函数的单调增区间为 A -2,1 B 3,5 C -5,1和 1,3 D -2,1和 3,5 4 下列四组函数,表示同一函数的是 A 2)( xxf ? , xxg ?)( B xxf ?)( , xxxg 2)( ? C 2ln)( xxf ? , xxg ln2)( ? D xa axf log)( ? a( 0 )1, ?a , 3 3)( xxg ? 5若函数 )(xfy? 的图象与函数 13)( ? xxg 的图象关于 x 轴对称,则函数 )(xf 的表达式为 A 13)( ? xxf B 13)( ? xxf C 13)( ? ?xxf D
3、13)( ? ?xxf 6下列函数中,在区间 (0, 2)上为增函数的是 A xy ? 21B 3y x? C ? ?xy ? 52log D 23 8 10y x x? ? ? 7设集合 ? ?25 , lo g ( 3 )Aa?,集合 , 2Ba? ,若 2AB? , 则 AB等于 A ? ?1,2,5 B ? ?1,2,5? C ? ?2,5,7 D ? ?7,2,5? 8已知 0 x y a 1,则有 A loga( xy) 0 B 0 loga( xy) 1 C 1 loga( xy) 2 D loga( xy) 2 9设 I 是全集,集合 P、 Q满足 P Q,则下面的结论中错误的
4、是 - 2 - A P CIQ=? B P Q= Q C P CIQ=? D P Q=P 10函数 f( x) = ax( a0,且 a 1)对于任意的实数 x、 y都有 A f( xy) =f( x) f( y) B f( x+y) =f( x) f( y) C f( xy) =f( x) +f( y) D f( x+y) =f( x) +f( y) 11定义运算: ,*,a a bab b a b? ? ?如 1*2=1,则函数 ( ) 2 *2xxfx ? 的值域为 A R B (0, )? C ?0,1 D ?1,? 12一般地,家庭用电量(千瓦时)与气温()有一定的关系,如图所示,图
5、( 1)表示某年 12个月中每月的平均气温图( 2)表示某家庭在这年 12 个月中每个月的用电量根据这些信息,以下关于该家庭用电量与其气温间关系的叙述中,正确的是 A气温最高时,用电量最多 B气温最低时,用电量最少 C当气温大于某一值时,用电量随气温增高而增加 D当气温小于某一值时,用电量随气温渐低而不变 第卷(非选择题 共 90分) 二、填空题(本大题 4 个小题,每小题 4分,共 16 分) 13设 g(x)=? ? ,0,ln ,0, xxxex 则 1( ( )2gg ? _ 14若 01a?,则函数 log ( 5)ayx?的图象不经过第 象限 15若函数 axfx ? 12 1)(
6、是奇函数,则 a = . 16下列命题中, 幂函数在第一象限都是增函数; 幂函数的图象都经过( 0, 0)和( 1, 1)点; 若幂函数 yx? 是奇函数,则 yx? 是定义域 上的增函数; 幂函数的图象不可能出现在第四象限 正确命题的序号是 - 3 - 三、解答题(本大题共 5个小题,满分 74 分,解答时要求写出必要的文字说明、证明过程或推演步骤 .) 17(本小题满分 14分) 计算:( 1) 2lg 5 lg 2 lg 50?; ( 2) ? ?30 2 2 4 23 ( 3 ) 3 3 3? ? ? ? ? 18 (本小题满分 14 分) 已知函数 )(xf 是定义在 ( 2,2)?
7、 上的奇函数且是减函数,若 0)21()1( ? mfmf ,求实数 m 的取值范围 . 19(本小题满分 14 分) 已知函数 f(x) x2 ax(x0) (1)判断 f(x)的奇偶性,并说明理由 ; (2)若 f(1) 2,试判断 f(x)在 2, ) 上的单调性 20(本小题满分 16分) 已知 f(x)= 5)(,5 3333 ? ? xxxgxx . ( 1)求证: ()fx是奇函数,并求 ()fx 的单调区间; ( 2)分别计算 (4) 5 (2) (2)f f g? 和 (9) 5 (3) (3)f f g? 的值,由此概括出涉及函数 ()fx和 ()gx对所有不等于零的实数
8、x 都成立的一个等式,并加以证明 . - 4 - 21(本小题满分 16分) 是否存在实数 a ,使函数 2( ) log ( )af x ax x?在区间 2, 4上是增函数?若存在,求出 a的取值范围;若不存在,说明理由 . 参考答案 一、选择题 : CBDDA DADAB CC 二、填空题 : 13 12 14一 15 12 16 三、解答题 : 17 解:( 1)原式 22l g 5 l g 2 ( 1 l g 5 ) l g 5 l g 2 l g 5 l g 2 l g 5 ( l g 5 l g 2 ) l g 2 l g 5 l g 2 1? ? ? ? ? ? ? ? ? ?
9、 ? ? ? 7分 ( 2)原式 1+3+ 6633? =4.? 14分 18解:? ? ? 2212 212 mm得 2321 ? m 。? 4分 由函数 )(xf 是定义在 )2,2(? 上的奇函数,由 ( 1) (1 2 ) 0f m f m? ? ? ?, 得 )12()1( ? mfmf .? 7分 函数 )(xf 在 ( 2, 2)? 上是减函数,得 121 ? mm 得 0?m 。? 10分 30 2m?. 实数 m 的取值范围为 230 ?m . ? 14分 19 解: (1)当 a 0时, f(x) x2, f( x) f(x),函数是偶函数? 2分 当 a0 时, f(x)
10、 x2 ax(x0 ,常数 a R),取 x 1 ,得 f( 1) f(1) 20 ; f( 1) f(1) 2a0 , f ( 1) f (1), f ( 1) f (1)? 5分 函数 f(x)既不是奇函数也不是偶函数? 6分 (2)若 f(1) 2,即 1 a 2,解得 a 1,这时 f(x) x2 1x.? 7分 任取 x1, x2 2, ) ,且 x1 x2, ? 8 分 则 f(x1) f(x2) ? ?x12 1x1 ?x22 1x2 (x1 x2)(x1 x2)x2 x1x1x2 (x1 x2)? ?x1 x21x1x2 ? 11分 由于 x12 , x22 ,且 x1 x2,
11、 x1 x2 0, x1 x2 1x1x2,? 12分 所以 f(x1) f(x2),? 13分 故 f(x)在 2, ) 上是单调递增函数? 14分 20.解:( 1)函数 ()fx的定义域是 ? ?R| 0xx?,? 1分 f(-x)= 55 )()( 3333 ? ? xxxx = - ()fx, ()fx是奇函数 . ? 4分 - 5 - 设 120 xx?, 1()fx - 2()fx =15 ( 3131 ?xx ) - 15 ( 3232 ?xx ) =15 ( 3231 xx? )( 1+32311xx),? 6分 y=x3在 R 上是增函数,故 3231 xx? , 1()f
12、x - 2( ) 0fx? , 即 12( ) ( )f x f x? , ()fx在 ? ?0,? 上是增函数 . ? 8分 又 ()fx是奇函数, ()fx在 ? ?,0? 上也是增函数 . 函数 ()fx的增区间是 ? ?,0? 和 ? ?0,? .? 10 分 ( 2) (4) 5 (2) (2)f f g? = 544 33 ? -5 522 33 ? 522 33 ? = 544 33 ? - 544 33 ? =0. ? 12 分 同理 (9) 5 (3) (3)f f g? =0.猜想: 2( ) 5 ( ) ( ) 0f x f x g x?.? 14分 证明: 2( ) 5
13、 ( ) ( )f x f x g x? = 5 66 ?xx -5 5 33 ?xx 5 33 ?xx = 5 66 ?xx - 5 66 ?xx =0.等式成立 . ? 16分 21解:设 xaxxu ? 2)( ( 1)当 a1 时,要使函数 )(xf 在 2, 4上为增函数,则 xaxxu ? 2)( 在 2, 4上为增函数,应有?024)2(221au a,? 4 分 解得 a 21 .? 6分 1a? .? 7分 ( 2)当 10 ?a 时,要使函数 )(xf 在 2, 4上为增函数,则 xaxxu ? 2)( 在 2, 4上为减函数,应有?0616)4(421au a, 解得 ?a .? 14 分 综上, a1时,函数 2( ) log ( )af x ax x?在区间 2, 4上为增函数 . ? 16分 -温馨提示: - - 6 - 【 精品教案、课件、试题、素材、教学计划 】 可 到 百度 搜索“ 163 文库 ”,到网站下载! 或直接访问: 【 163 文库】: 1, 上传优质课件 试题 教案 资料赚钱; 2, 便宜下载精品资料的好地方!