专题01 因动点产生的面积问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版).doc

上传人(卖家):四川天地人教育 文档编号:621068 上传时间:2020-07-06 格式:DOC 页数:12 大小:1.68MB
下载 相关 举报
专题01 因动点产生的面积问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版).doc_第1页
第1页 / 共12页
专题01 因动点产生的面积问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版).doc_第2页
第2页 / 共12页
专题01 因动点产生的面积问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版).doc_第3页
第3页 / 共12页
专题01 因动点产生的面积问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版).doc_第4页
第4页 / 共12页
专题01 因动点产生的面积问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版).doc_第5页
第5页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、 【类型综述】 面积是平面几何中一个重要的概念,关联着平面图形中的重要元素边与角,由动点而生成的面积问题, 是抛物线与直线形结合的觉形式,常见的面积问题有规则的图形的面积(如直角三角形、平行四边形、菱 形、矩形的面积计算问题)以及不规则的图形的面积计算,解决不规则的图形的面积问题是中考压轴题常 考的题型,此类问题计算量较大。有时也要根据题目的动点问题产生解的不确定性或多样性。解决这类问 题常用到以下与面积相关的知识:图形的割补、等积变形、等比转化等数学方法. 面积的存在性问题常见的 题型和解题策略有两类:一是先根据几何法确定存在性,再列方程求解,后检验方程的根二是先假设关 系存在,再列方程,后

2、根据方程的解验证假设是否正确 【方法揭秘】 解决动点产生的面积问题,常用到的知识和方法,如下: 如图 1,如果三角形的某一条边与坐标轴平行,计算这样“规则”的三角形的面积,直接用面积公式 如图 2,图 3,三角形的三条边没有与坐标轴平行的,计算这样“不规则”的三角形的面积,用“割”或“补” 的方法 图 1 图 2 图 3 计算面积长用到的策略还有: 如图 4,同底等高三角形的面积相等平行线间的距离处处相等 如图 5,同底三角形的面积比等于高的比 如图 6,同高三角形的面积比等于底的比 图 4 图 5 图 6 【典例分析】 例 1 如图,抛物线 yax2bxc(a0)与 x 轴交于 A(1, 0

3、),B(4, 0)两点,与 y 轴交于点 C(0, 2)点 M(m, n)是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上过点 M 作 x 轴的平行线交 y 轴于点 Q, 交抛物线于另一点 E,直线 BM 交 y 轴于点 F (1)求抛物线的解析式,并写出其顶点坐标; (2)当 SMFQSMEB13 时,求点 M 的坐标 来源:163文库 ZXXK 例 2 如图, 已知抛物线与坐标轴分别交于点、和点 ,动点 从原点 开始沿 方向以每秒 个单位长度移动,动点 从点 开始沿方向以每秒 个单位长度移动,动点 、 同时出发,当 动点 到达原点 时,点 、 停止运动 直接写出抛物线的解析式:_; 求

4、的面积 与 点运动时间 的函数解析式;当 为何值时,的面积最大?最大面积是多少? 当的面积最大时,在抛物线上是否存在点 (点 除外) ,使的面积等于的最大面积? 若存在,求出 点的坐标;若不存在,请说明理由 来源:学,科,网 Z,X,X,K 例 3 如图,在平面直角坐标系中,直线 1 1 2 yx与抛物线 yax2bx3 交于 A、B 两点,点 A 在 x 轴上,点 B 的纵坐标为 3点 P 是直线 AB 下方的抛物线上的一动点(不与点 A、B 重合),过点 P 作 x 轴 的垂线交直线 AB 于点 C,作 PDAB 于点 D (1)求 a、b 及 sinACP 的值; (2)设点 P 的横坐

5、标为 m 用含 m 的代数式表示线段 PD 的长,并求出线段 PD 长的最大值; 连结 PB,线段 PC 把PDB 分成两个三角形,是否存在适合的 m 的值,使这两个三角形的面积比为 910?若存在,直接写出 m 的值;若不存在,请说明理由 例 4 如图,已知二次函数的图象过点O(0,0)、A(4,0)、B( 4 3 2, 3 ),M 是OA 的中点 (1)求此二次函数的解析式; (2)设 P 是抛物线上的一点,过 P 作 x 轴的平行线与抛物线交于另一点 Q,要使四边形 PQAM 是菱形, 求点P 的坐标; (3)将抛物线在x轴下方的部分沿x轴向上翻折,得曲线 OBA(B为 B 关于 x 轴

6、的对称点) ,在原抛 物线 x 轴的上方部分取一点C,连结CM,CM 与翻折后的曲线OBA 交于点D,若CDA 的面积是MDA 面积 的2 倍,这样的点C 是否存在?若存在求出点C 的坐标;若不存在,请说明理由 例例 5 如图,直线 l 经过点 A(1,0),且与双曲线 m y x (x0)交于点 B(2,1)过点( ,1)P p p(p1)作 x 轴的平行线分别交曲线 m y x (x0)和 m y x (x0)于 M、N 两点 (1)求 m 的值及直线 l 的解析式; (2)若点 P 在直线 y2 上,求证:PMBPNA; (3)是否存在实数 p,使得 SAMN4SAMP?若存在,请求出所

7、有满足条件的 p 的值;若不存在,请说 明理由 例例 6 如图 1,在ABC 中,C90 ,AC3,BC4,CD 是斜边 AB 上的高,点 E 在斜边 AB 上, 过点 E 作直线与ABC 的直角边相交于点 F,设 AEx,AEF 的面积为 y (1)求线段 AD 的长; (2)若 EFAB,当点 E 在斜边 AB 上移动时, 求 y 与 x 的函数关系式(写出自变量 x 的取值范围) ; 来源:Z。xx。k.Com 当 x 取何值时,y 有最大值?并求出最大值 (3)若点 F 在直角边 AC 上(点 F 与 A、C 不重合) ,点 E 在斜边 AB 上移动,试问,是否存在直线 EF 将ABC

8、 的周长和面积同时平分?若存在直线 EF,求出 x 的值;若不存在直线 EF,请说明理由 图 1 备用图 【变式训练】 1如图,点 A 是直线 y=x 上的动点,点 B 是 x 轴上的动点,若 AB=2,则AOB 面积的最大值为( ) A2 B+1 C-1 D2 2如图,已知,以为圆心,长为半径作 , 是上一个动点,直线交 轴于 点, 则面积的最大值是( ) A B C D 3如图,在中, ,动点 从点 开始沿向点 以的速度移动, 动点 从点 开始沿向点 以的速度移动.若 , 两点分别从 , 两点同时出发, 点到达 点运动停 止,则的面积 随出发时间 的函数关系图象大致是( ) A B C D

9、 4如图,在中, ,动点 P 从点 B 开始沿边 BA、A C 向点 C 以 的速度移动,动点 Q 从点 B 开始沿边 BC 向点 C 以的速度移动,设的面积为运动时间 为,则下列图象能反映 y 与 x 之间关系的是 A B C D 5如图,在正方形ABCD中,3ABcm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时 动点N自D点出发沿折线DCCB以每秒2cm的速度运动,到达B点时运动同时停止,设AMN的面 积为 2 y cm,运动时间为x(秒) ,则下列图象中能大致反映y与x之间的函数关系的是( ) A B C. D 6如图,在矩形中,点 是边上的动点(点 不与点 ,点 重合) ,

10、过点 作直 线,交边于 点,再把沿着动直线对折,点 的对应点是 点,设的长度为 ,与 矩形重叠部分的面积为 (1)求的度数; (2)当 取何值时,点 落在矩形的边上? (3)求 与 之间的函数关系式; 当 取何值时,重叠部分的面积等于矩形面积的? 7已知直角梯形 OABC 在如图所示的平面直角坐标系中,ABOC,AB=10,OC=22,BC=15,动点 M 从 A 点出发,以每秒一个单位长度的速度沿 AB 向点 B 运动,同时动点 N 从 C 点出发,以每秒 2 个单位长度 的速度沿 CO 向 O 点运动。当其中一个动点运动到终点时,两个动点都停止运动。 (1)求 B 点坐标; (2)设运动时

11、间为 t 秒。 当 t 为何值时,四边形 OAMN 的面积是梯形 OABC 面积的一半; 当 t 为何值时,四边形 OAMN 的面积最小,并求出最小面积。 若另有一动点 P,在点 M、N 运动的同时,也从点 A 出发沿 AO 运动。在的条件下,PMPN 的长度 也刚好最小,求动点 P 的速度。 8如图,在中, ,动点 从点 开始沿着边向点 以的速 度移动(不与点 重合) ,动点 从点 开始沿着边向点 以的速度移动(不与点 重合) 若 、 两 点同时移动; 当移动几秒时,的面积为 设四边形的面积为,当移动几秒时,四边形的面积为? 9如图,已知抛物线 y= x2+bx+c 与坐标轴分别交于点 A(

12、0,8) 、B(8,0)和点 E,动点 C从原点 O 开始沿 OA方向以每秒 1个单位长度移动, 动点 D从点 B开始沿 BO方向以每秒 1 个单位长度移动, 动点 C、 D 同时出发,当动点 D到达原点 O 时,点 C、D 停止运动 (1)直接写出抛物线的解析式: ; (2)求CED 的面积 S 与 D 点运动时间 t 的函数解析式;当 t 为何值时,CED 的面积最大?最大面积是 多少? (3)当CED的面积最大时,在抛物线上是否存在点 P(点 E除外) ,使PCD的面积等于CED 的最大面 积?若存在,求出 P 点的坐标;若不存在,请说明理由 10如图,已知抛物线 y= 1 2 x2+b

13、x+c 与坐标轴分别交于点点 A(0,8) 、B(8,0)和点 E,动点 C 从原 点 O 开始沿 OA 方向以每秒 1 个单位长度移动,动点 D 从点 B 开始沿 BO 方向以每秒 1 个单位长度移动, 动点 C、D 同时出发,当动点 D 到达原点 O 时,点 C、D 停止运动 来源:学.科.网 Z.X.X.K (1)求该抛物线的解析式及点 E 的坐标; 来源:Z。xx。k.Com (2) 若 D 点运动的时间为 t, CED 的面积为 S, 求 S 关于 t 的函数关系式, 并求出CED 的面积的最大值 11 如图 1, 抛物线 2 yxbxc与x轴交于AB、两点, 与y轴交于点0 2C,

14、 连结 AC, 若t a n2 .OAC (1)求抛物线的解析式; (2)抛物线对称轴上有一动点 P,当90APC时,求出点P的坐标; (3)如图 2 所示,连结BC,M是线段BC上(不与B、C重合)的一个动点.过点M作直线ll ,交 抛物线于点N,连结CN、BN,设点M的横坐标为当 t 为何值时,BCN的面积最大?最大面积为 多少? 12在ABC 中,ACB=90 ,AC=BC,D 是 AB 的中点,点 E 是边 AC 上的一动点,点 F 是边 BC 上 的一动点 (1)若 AE=CF,试证明 DE=DF; (2)在点 E、点 F 的运动过程中,若 DEDF,试判断 DE 与 DF 是否一定

15、相等? 并加以说明 (3)在(2)的条件下,若 AC=2,四边形 ECFD 的面积是一个定值吗?若不是, 请说明理由,若是,请 直接写出它的面积 13如图,在ABC中,已知ACAB, 0 90BAC,cmBC6,直线BCCM ,动点 D 从点 C 开始以每秒 2cm 的速度运动到 B 点,动点也同时从点 C 开始沿射线 CM 方向以每秒 1cm 的速度运动 (1)问运动多少秒时,ACEABD,并说明理由 (2)设运动时间为x秒,请用含x的代数式来表示ABD的面积 (3)运动多少秒时,ABD与ACE的面积比为 3:1 14在平面直角坐标系中,平行四边形如图放置,点 、 的坐标分别是、,将此平行四

16、 边形绕点 顺时针旋转,得到平行四边形 如抛物线经过点 、 、,求此抛物线的解析式; 在情况下,点 是第一象限内抛物线上的一动点,问:当点在何处时,的面积最大?最大面 A 积是多少?并求出此时 的坐标; 在的情况下,若 为抛物线上一动点, 为 轴上的一动点,点 坐标为,当 、 、 、 构成以 作为一边的平行四边形时,求点 的坐标 15如图,直线 y= 1 2 x+1 与 x 轴交于点 A,与 y 轴交于点 B,抛物线 y=x2+bx+c 经过 A、B 两点 (1)求抛物线的解析式; (2)点 P 是第一象限抛物线上的一点,连接 PA、PB、PO, 若POA 的面积是POB 面积的 4 3 倍求

17、点 P 的坐标; 当四边形 AOBP 的面积最大时,求点 P 的坐标; (3)点 M 为直线 AB 上的动点,点 N 为抛物线上的动点,当以点 O、B、M、N 为顶点的四边形是平行四 边形时,请直接写出点 M 的坐标 16 (2015 秋随州期末)如图,已知抛物线 y=ax2+bx+c 经过 A (1,0) 、B(0,3)及 C(3,0)点,动 点 D 从原点 O 开始沿 OB 方向以每秒 1 个单位长度移动,动点 E 从点 C 开始沿 CO 方向以每秒 1 个长度单 位移动,动点 D、E 同时出发,当动点 E 到达原点 O 时,点 D、E 停止运动 (1)求抛物线的解析式及顶点 P 的坐标;

18、 (2)若 F(1,0) ,求DEF 的面积 S 与 E 点运动时间 t 的函数解析式;当 t 为何值时,DEF 的面积最 大?最大面积是多少? (3)当DEF 的面积最大时,抛物线的对称轴上是否存在一点 N,使EBN 是直角三角形?若存在,求出 N 点的坐标,若不存在,请说明理由 17如图,抛物线与 轴交于点 和点,与 轴交于点 ,其对称轴 为 求抛物线的解析式并写出其顶点坐标; 若动点 在第二象限内的抛物线上,动点 在对称轴 上 当,且时,求此时点 的坐标; 当四边形的面积最大时,求四边形面积的最大值及此时点 的坐标 18如图,直线与 轴交于点 ,与 轴交于点 ,抛物线 经过 、 两点 求

19、抛物线的解析式; 如图,点 是直线上方抛物线上的一动点,当面积最大时,请求出点 的坐标和面积的最 大值? 在的结论下,过点 作 轴的平行线交直线于点 ,连接,点 是抛物线对称轴上的动点,在抛物 线上是否存在点 ,使得以 、 、 、为顶点的四边形是平行四边形?如果存在,请直接写出点 的坐标; 如果不存在,请说明理由 19如图,抛物线与坐标轴交点分别为, ,作直线 BC 求抛物线的解析式; 点 P 为抛物线上第一象限内一动点, 过点 P作轴于点 D, 设点 P 的横坐标为, 求 的面积 S与 t的函数关系式; 条件同,若与相似,求点 P 的坐标 20如图,已知抛物线过点 A(4,0),B(2,0) ,C(0,4) (1)求抛物线的解析式; (2)在图甲中,点 M 是抛物线 AC段上的一个动点,当图中阴影部分的面积最小值时,求点 M 的坐标; (3)在图乙中,点 C 和点 C1关于抛物线的对称轴对称,点 P 在抛物线上,且PAB=CAC1,求点 P 的横 坐标

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 中考复习 > 二轮专题
版权提示 | 免责声明

1,本文(专题01 因动点产生的面积问题-2019版突破中考数学压轴之学霸秘笈大揭秘(原卷版).doc)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|