1、教育部教育部“精英杯公开课大赛简介精英杯公开课大赛简介 2021年6月,由教育学会牵头,教材编审委员会具体组织实施,在全国8个城市,设置了12个分会场,范围从“小学至高中全系列部编新教材进行了统一的培训和指导。每次指導,都輔以精彩的優秀示範課。在這些示範課中,不乏全國名師和各省名師中的佼佼者。他们的课程,无论是在内容和形式上,都是经过认真研判,把各学科的核心素养作为教学主线。既涵盖城市中小学、又包括乡村大局部学校的教学模式。適合全國大局部教學大區。本課件就是從全國一等獎作品中,优选出的具有代表性的作品。示范性强,有很大的推广价值。30.5 二次函数与一元二次方程的关系 导入新课讲授新课当堂练习
2、课堂小结学练优九年级数学下JJ 教学课件第三十章 二次函数学习目标1.通过探索,理解二次函数与一元二次方程之间的联通过探索,理解二次函数与一元二次方程之间的联系系.(难点难点2.能运用二次函数及其图像、性质确定方程的解能运用二次函数及其图像、性质确定方程的解.重点重点3.了解用图像法求一元二次方程的近似根了解用图像法求一元二次方程的近似根.1一次函数yx2的图象与x轴的交点为(,),一元一次方程x20的根为_.2一次函数y3x6的图象与x轴的交点为(,),一元一次方程3x60的根为_.问题一次函数ykxb的图象与x轴的交点与一元一次方程kxb0的根有什么关系?一次函数ykxb的图象与x轴的交点
3、的横坐标就是一元一次方程kxb0的根.导入新课导入新课复习引入那么二次函数与一元二次方程有什么关系呢,接下来我们一起探讨.讲授新课讲授新课一元二次方程的根与二次函数图象的关系一合作探究问题1:画出二次函数 的图象,你能从图象中看出它与x轴的交点吗?223yxx(-1,0)与(3,0)(-1,0)(3,0)问题2:二次函数y=x2-2x-3与一元二次方程x2-2x-3=0又怎样的关系?当x=-1时,y=0,即x2-2x-3=0,也就是说,x=-1是一元二次方程x2-2x-3=0的一个根;同理,当x=3时,y=0,即x2-2x-3=0,也就是说,x=3是一元二次方程x2-2x-3=0的一个根;知识
4、要点 一般地,如果二次函数y=ax2+bx+c的图象与x轴有两个交点(x1,0)、(x2,0)那么一元二次方程ax2+bx+c=0有两个不相等的实数根x=x1、x=x2.1y=x26x9y=x2x1y=x2x2观察图象,完成下表:抛物线与x轴公共点个数公共点横坐标相 应 的 一 元 二 次方程的根y=x2x1y=x26x9y=x2x20个1个2个x2-x+1=0无解0 x2-6x+9=0,x1=x2=3-2,1 x2+x-2=0,x1=-2,x2=1知识要点二次函数y=ax2+bx+c的图象与x轴交点一元二次方程ax2+bx+c=0的根b2-4ac有两个交点有两个不相等的实数根b2-4ac 0
5、有一个交点有两个相等的实数根b2-4ac=0没有交点没有实数根b2-4ac 0二次函数y=ax2+bx+c的图象与x轴交点的坐标与一元二次方程ax2+bx+c=0根的关系例1:关于x的二次函数ymx2(m2)x2(m0)(1)求证:此抛物线与x轴总有两个交点;(2)假设此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值(1)证明:m0,(m2)24m2m24m48m(m2)2.(m2)20,0,此抛物线与x轴总有两个交点;(2)解:令y0,那么(x1)(mx2)0,所以 x10或mx20,解得 x11,x2 .当m为正整数1或2时,x2为整数,即抛物线与x轴总有两个交点,且它们
6、的横坐标都是整数所以正整数m的值为1或2.例1:关于x的二次函数ymx2(m2)x2(m0)(1)求证:此抛物线与x轴总有两个交点;(2)假设此抛物线与x轴总有两个交点,且它们的横坐标都是整数,求正整数m的值m2变式:抛物线yx2axa2.(1)求证:不管a取何值时,抛物线yx2axa2与x轴都有两个不同的交点;(2)设这个二次函数的图象与x轴相交于A(x1,0),B(x2,0),且x1、x2的平方和为3,求a的值(1)证明:a24(a2)(a2)240,不管a取何值时,抛物线yx2axa2与x轴都有两个不同的交点;(2)解:x1x2a,x1x2a2,x1(2)x2(2)(x1x2)22x1x
7、2a22a43,a1.例2:求一元二次方程 的根的近似值精确到0.1.0122 xx 分析:一元二次方程 x-2x-1=0 的根就是抛物线 y=x-2x-1 与x轴的交点的横坐标,因此我们可以先画出这条抛物线,然后从图上找出它与x轴的交点的横坐标,这种解一元二次方程的方法叫作图象法.利用二次函数求一元二次方程的近似解二解:画出函数 y=x-2x-1 的图象如以以下图,由图象可知,方程有两个实数根,一个在-1与0之间,另一个在2与3之间.先求位于-1到0之间的根,由图象可估计这个根是或,利用计算器进行探索,见下表:x-0.4-0.5y-0.040.25观察上表可以发现,当x分别取和时,对应的y由
8、负变正,可见在与之间肯定有一个x使y=0,即有y=x2-2x-1的一个根,题目只要求精确到,这时取x或x都符合要求.但当x时更为接近0.故x1.同理可得另一近似值为x2.一元二次方程的图象解法利用二次函数的图象求一元二次方程2x2+x-15=0的近似根.(1)用描点法作二次函数 y=2x2+x-15的图象;(2)观察估计二次函数 y=2x2+x-15的图象与x轴的交点的横坐标;由图象可知,图象与x轴有两个交点,其横坐标一个是-3,另一个在2与3之间,分别约为-3和(可将单位长再十等分,借助计算器确定其近似值);(3)确定方程2x2+x-15=0的解;由此可知,方程2x2+x-15=0的近似根为
9、:x1-3,x22.5.方法归纳例3:二次函数yax2bxc的图象如以下图,那么一元二次方程ax2bxc0的近似根为()Ax1,x20.1 Bx1,x2Cx1,x20.9 Dx13,x21解析:由图象可得二次函数yax2bxc图象的对称轴为x1,而对称轴右侧图象与x轴交点到原点的距离约为0.5,x20.5;又对称轴为x1,则 1,x12(1)0.52.5.故x12.5,x20.5.故选B.221xx B 解答此题首先需要根据图象估计出一个根,再根据对称性计算出另一个根,估计值的精确程度,直接关系到计算的准确性,故估计尽量要准确方法总结利用函数图象求方程x2-2x-2=0的实数根(精确到).-2
10、22464-48-2-4y=x22x2解:作y=x2-2x-2的图象(如右图所示),它与x轴的公共点的横坐标大约是-,2.7.所以方程x2-2x-2=0的实数根为x1,x22.7.练一练 一元二次方程ax2+bx+c=m的根就是二次函数y=ax2+bx+c 与直线y=mm是实数图象交点的横坐标.既可以用求根公式求二次方程的根,也可以通过画二次函数图象来估计一元二次方程的根.说一说 判断方程 ax2+bx+c=0(a0,a,b,c为常数)一个解x的范围是 A.3 x 3.23 B.3.23 x C.3.24 x 3.25 D.3.25 0?(3)x取什么值时,y0?862xxy0862 xxxy
11、O248解:1x1=2,x2=4;2x4;32x4.课堂小结课堂小结二次函数与一元二次方程二次函数与一元二次方程的关系y=ax2+bx+c(a 0)当y取定值时就成了一元二次方程;ax2+bx+c=0(a 0),右边换成y时就成了二次函数.二次函数与一元二次方程根的情况二次函数二次函数与与x轴的轴的交点个数交点个数判别式 的符号一元二次方程根的情况 平方根、立方根第6章 实 数导入新课讲授新课当堂练习课堂小结2.立方根七年级数学下HK教学课件情境引入学习目标1.了解立方根的概念,会用根号表示一个数的立方根.重点2.能用开立方运算求某些数的立方根,了解开立方和 立方互为逆运算.重点,难点导入新课
12、导入新课 某化工厂使用半径为1米的一种球形储气罐储藏气体,现在要造一个新的球形储气罐,如果要求它的体积必须是原来体积的8倍,那么它的半径应是原来储气罐半径的多少倍?情境引入讲授新课讲授新课立方根的概念及性质一问题:要做一个体积为27cm3的正方体模型如图,它的棱长要取多少?你是怎么知道的?解:设正方体的棱长为x,那么这就是要求一个数,使它的立方等于27.因为 所以 x=3.正方体的棱长为3.327,x 3327,想一想(1)什么数的立方等于-8?(2)如果问题中正方体的体积为5cm3,正方体的边长又该是多少?-235cmu立方根的概念立方根的概念 一般地,一个数的立方等于a,这个数就叫做a的立
13、方根,也叫做a的三次方根记作.u立方根的表示立方根的表示 一个数a的立方根可以表示为:根指数被开方数其中a是被开方数,3是根指数,3不能省略.读作:三次根号 a,3a3a填一填:填一填:根据立方根的意义填空:因为 =8,所以8的立方根是();32 因为()3=0.125,所以的立方是 ;因为()3 0,所以0的立方根是;因为 ()3 8,所以8的立方根是 ;因为()3 ,所以 的立方().82782702-20-212122323u立方根的性质立方根的性质 一个正数有一个正的立方根;一个负数有一个负的立方根,零的立方根是零.立方根是它本身的数有1,-1,0;平方根是它本身的数只有0.知识要点u
14、平方根与立方根的异同平方根与立方根的异同 被开方数平方根立方根有两个互为相反数有一个,是正数无平方根零有一个,是负数零正数负数零开立方及相关运算二a叫做被开方数3叫做根指数 3a 每个数a都有一个立方根,记作 ,读作“三次根号a.如:x3=7时,x是7的立方根3a求一个数a的立方根的运算叫做开立方,a叫做被开方数注意:这个根指数3绝对不可省略.求一个数的立方根的运算叫作“开立方.“开立方与“立方互为逆运算逆向思维 与学习开平方运算的过程一样,表达着一种重要的数学思想方法,你有体会了么?典例精析例1 求以下各数的立方根:;216.0.5;27;125833:(1)327273273.,的立方根是
15、,即解解3328(2)512582125582.1255,的立方根是,即;8331234533(4)0.60.2160.216 0.60.2160.6.,的立方根是,即(5)-5的立方根是.53333273(3)328833382333.82,的立方根是,即;833340.216;55.33(2)_33(3)_330_求以下各式的值:体会:对于任何数体会:对于任何数a,33_a a 240-2-3探究探究1332 _=334 _=温馨提示:开立方与立方运算互为逆运算温馨提示:开立方与立方运算互为逆运算.体会:对于任何数体会:对于任何数a,33_a33(8)_338_3327_3327_330_
16、a 8 270-8-27探究探究2求以下各式的值:3_a3a体会:(1)求一个负数的立方根,可以先求出这个负数绝对值的立方根,然后再取它的相反数.(2)负号可从“根号内 直接移到“根号外.求以下各式的值求以下各式的值:(1);(2)30.00830.008探究探究3-求以下各数的值:.165;54;643;642;125.013333333 10.5,24,34,45,516.练一练例2 求以下各式的值:33333818;20.064;3;49.125 3331822 :;解解 333822312555 ;33320.0640.40.4;33499.例3 x2 的平方根是2,2xy7的立方根是
17、3,求x2y2的算术平方根方法总结:此题先根据平方根和立方根的定义,运用方程思想求出x,y值,再根据算术平方根的定义求解解:x2的平方根是2,x24,x6.2xy7的立方根是3,2xy727.把x6代入,解得 y8.x2y26882100,x2y2 的算术平方根为10.例3 用计算器求以下各数的立方根:343,-1.331.解:依次按键:显示:7所以,2ndF433=3343=7.依次按键:显示:-1.1所以,2ndF1(-).331.331=1.1.13=用计算器求立方根三例4 用计算器求 的近似值精确到.32解:依次按键:显示:1.259 921 05所以,2ndF=2321.260.()
18、当堂练习当堂练习1.判断以下说法是否正确.(2)任何数的立方根都只有一个;()(3)如果一个数的立方根是这个数本身,那么这个数一定是零;()(5)0的平方根和立方根都是0.()(1)25的立方根是5;()(4)一个数的立方根不是正数就是负数;2.求以下各式的值 364(3).1253164;()320.001;()解:1 2 3 3644;30.0010.1;3644.1255 3.求以下各式的值:1664-(3)3327102)1(36427)2(33)5()4(2)5(335)5(234276427102334364276427330441664-3.105555原式4.将体积分别为600 cm3和129 cm3的长方体铁块,熔成一个正方体铁块,那么这个正方体的棱长是多少?解:因为600+129=729,729的立方根是9,所以正方体的棱长为9 cm.解:一个数的立方根等于它本身的数有0,1,1.当1a20时,a21,那么a1;当1a21时,a20,那么a0;当1a21时,a22,那么a .5.已知 ,求a的值3221-=1-aa2立方根立方根的概念及性质课堂小结课堂小结开立方及相关运算