1、9.1 二次根式和它的性质(2)我们知道二次根式我们知道二次根式 中中a0,那么二次根,那么二次根式式 还有哪些性质呢?还有哪些性质呢?aa当当a0时,时,是什么数?是什么数?当当a=0时,时,是什么数?是什么数?当当 有意义时,有意义时,a是什么数是什么数?aaa非负数非负数 0a 0a a0aa你知道还有哪些式子的值具有这种你知道还有哪些式子的值具有这种非负非负特性?特性?学过的三类非负数:学过的三类非负数:一个数的偶次幂;一个数的偶次幂;一个数的绝对值;一个数的绝对值;0().a a x20,x4 00 x 0(0).aa已知已知 ,求求x,y的值的值.2110 xy x=1,y=-1解
2、:解:非负数非负数非负数非负数210 x10y2110 xy210 x10y20 xyz若若,则则非负数的性质:非负数的性质:x=y=z=0.解:解:由题可知由题可知 x+1=0 x+y=0已知已知 ,求求x,y的值的值.10 xxyx=-1y=12222(4)(),(2)()1()(),()()3040132根据算术平方根的意义填空:根据算术平方根的意义填空:你能确定你能确定()(a0)的化简结果吗?)的化简结果吗?a2333 .的的算算术术平平方方根根是是,()()2222=.333的的算算术术平平方方根根是是,()()2=0.()aaaa非非负负数数 的的算算术术平平方方根根是是,()(
3、)222222()(3 2)()()().aba b,323a1832计算计算:2211.522 5()();()()21.5=1.5解解:(1 1)()222 5=()()2225()=4 5=20(ab)2=a2b22=()()0aa a 22(2)22222(3)=(3 2)=(25)=2()=2计算:计算:3=1825223(2)222()aabb2412探究 当当a0时,时,等于什么?若等于什么?若a的值无限的值无限定,定,又等于什么?又等于什么?2a2a22 20 1.223()20 20.10231.填空:填空:由此可以看出:由此可以看出:(a0).2a a2322320.52.
4、试一试试一试949230.250.5=3由此可以看出,由此可以看出,2(0)aa-a2|aa一一定定成成立立吗吗?2aa 一一定定成成立立吗吗?2(0)aa-a2aaa(a0)(a0)如果如果a是任意有理数,则是任意有理数,则 2aaa(a0)(a0,a+c-b0.2abcbac =a+b-c+(a+c)-b=2a 2244383.2xxxx化化简简 .3 320,2xx 解解:由由,得得 22443 23xxxx 222323xxx =2-x+3-2x+3x =524 9.nn已已知知是是整整数数,求求正正整整数数 的的最最小小值值24n是是整整数数,解:解:24n是完全平方数,是完全平方数,又又24n=22 6n,正整数正整数n的最小值为的最小值为6.1.a具具有有双双重重非非负负性性:0a;0.a 222.()aa与与的的区区别别与与联联系系:取取值值范范围围不不同同;运运算算顺顺序序不不同同;运运算算结结果果不不同同:2aaa(a0)(a0)2(),aa区别:区别:联系:联系:22()aa与与均均为为非非负负数数;220().aaa当当时时,