2022年湘教版八上《全等三角形的性质和判定的应用》立体精美课件.ppt

上传人(卖家):ziliao2023 文档编号:7180123 上传时间:2023-10-07 格式:PPT 页数:35 大小:1.43MB
下载 相关 举报
2022年湘教版八上《全等三角形的性质和判定的应用》立体精美课件.ppt_第1页
第1页 / 共35页
2022年湘教版八上《全等三角形的性质和判定的应用》立体精美课件.ppt_第2页
第2页 / 共35页
2022年湘教版八上《全等三角形的性质和判定的应用》立体精美课件.ppt_第3页
第3页 / 共35页
2022年湘教版八上《全等三角形的性质和判定的应用》立体精美课件.ppt_第4页
第4页 / 共35页
2022年湘教版八上《全等三角形的性质和判定的应用》立体精美课件.ppt_第5页
第5页 / 共35页
点击查看更多>>
资源描述

1、1.熟练掌握全等三角形的判定定理,全面认清条件,能正确地利用判定条件判定三角形全等;(重点、难点)2.运用全等三角形的判定定理解决线段相等与角相等的相关实际性问题.学习目标导入新课导入新课回顾与思考 如图,要证明ACE BDF,根据给定的条件和指明的依据,将应当添设的条件填在横线上.(1)ACBD,CE=DF,.(SAS)(2)AC=BD,ACBD,_.(ASA)(3)CE=DF,.(SSS)C BAEFDAC=BDA=BAC=BDAE=BFABCABC探究活动探究活动1 1:AAA 能否判定两个三角形全等结论:三个内角对应相等的三角形不一定全等.讲授新课讲授新课全等三角形成立的条件一想一想:

2、如图,把一长一短的两根木棍的一端固定在一起,摆出ABC.固定住长木棍,转动短木棍,得到ABD.这个实验说明了什么?B A CDABC和ABD满足AB=AB,AC=AD,B=B,但ABC与ABD不全等.探究活动探究活动2 2:SSA能否判定两个三角形全等几何画板:探究边边角.gsp画一画:画ABC 和DEF,使B=E=30,AB=DE=5 cm,AC=DF=3 cm 观察所得的两个三角形是否全等?ABMCDABCABD 有两边和其中一边的对角分别相等的两个三角形不一定全等.结论例1 下列条件中,不能证明ABCDEF的是()典例精析AABDE,BE,BCEFBABDE,AD,ACDFCBCEF,B

3、E,ACDFDBCEF,CF,ACDF解析:要判断能不能使ABCDEF,应看所给出的条件是不是两边和这两边的夹角,只有选项C的条件不符合.C 判断三角形全等时,注意两边与其中一边的对角相等的两个三角形不一定全等解题时要根据已知条件的位置来考虑,只具备SSA时是不能判定三角形全等的方法总结 如图,在ABC和DEC中,已知一些相等的边或角(见下表),请再补充适当的条件,从而能运用已学的判定方法来判定ABCDEC.AB=DEB=EACB=DCEBC=EC练一练 例2 已知:如图,AB=CD,BC=DA,E,F是AC上的两点,且AE=CF.求证:BF=DE.证明:在ABC和CDA中,ABCCDA(SS

4、S).BCF=DAE.AB=CD,BC=DA,AC=CA(公共边),全等三角形的判定与性质的综合运用二在BCF和DAE中,BCFDAE(SSS).BF=DE.BC=DA,BCF=DAE,CF=AE,例3 如图,在四边形ABCD中,ABAD,BCDC,E为AC上的一动点(不与A重合),在点E移动的过程中BE和DE是否相等?若相等,请写出证明过程;若不相等,请说明理由解:相等理由如下:在ABC和ADC中,ABAD,ACAC,BCDC,ABCADC(SSS),DAEBAE.在ADE和ABE中,ABAD,DAEBAE,AEAE,ADEABE(SAS),BEDE.本题考查了全等三角形的判定和性质,一般以

5、考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件本题要特别注意“SSA”不能作为全等三角形一种证明方法使用方法总结例4 如图,已知CA=CB,AD=BD,M,N分别是CA,CB的中点,求证:DM=DN.在ABD与CBD中证明:CA=CB (已知)AD=BD (已知)CD=CD (公共边)ACDBCD(SSS)连接CD,如图所示;A=B又M,N分别是CA,CB的中点,AM=BN在AMD与BND中AM=BN (已证)A=B (已证)AD=BD (已知)AMDBND(SAS)DM=DN.例5 某地在山区修

6、建高速公路时需挖通一条隧道为估测这条隧道的长度,需测出这座山A,B间的距离,结合所学知识,你能给出什么好方法吗?在AOB与AOB中,解:OA=OA,AOB=AOB,OB=OB,ACDBCD(SSS)选择适当的地点O,连接AO并延长至A,使OA=OA;连接BO并延长至B,使OB=OB,连接AB,如图A=B当堂练习当堂练习 1.如图,已知AC=DB,ACB=DBC,则有ABC ,理由是 ,且有ABC=,AB=;ABCDDCBSASDCBDC2.已知:如图,AB=AC,AD是ABC的角平分线,求证:BD=CD.证明:AD是ABC的角平分线,BAD=CAD,在ABD和ACD中,AB=ACBAD=CAD

7、AD=AD ABDACD(SAS).(已知),(已证),(已证),BD=CD.已知:如图,AB=AC,BD=CD,求证:BAD=CAD.变式变式1证明:BAD=CAD,在ABD和ACD中,ABDACD(SSS).AB=ACBD=CDAD=AD(已知),(公共边),(已知),已知:如图,AB=AC,BD=CD,E为AD上一点,求证:BE=CE.变式变式2证明:BAD=CAD,在ABD和ACD中,AB=ACBD=CDAD=AD(已知),(公共边),(已知),BE=CE.在ABE和ACE中,AB=ACBAD=CADAE=AE(已知),(公共边),(已证),ABDACD(SSS).ABEACE(SAS

8、).3.如图,CDAB于D点,BEAC于E点,BE,CD交于O点,且AO平分BAC.求证:OBOC.证明:BEAC,CDAB,ADCBDCAEBCEB90.AO平分BAC,12.在AOD和AOE中,AODAOE(AAS).OD=OE.ADC=AEB12OA=OA BDC=CEBBODCOEOD=OE 在BOD和COE中,BODCOE(ASA).OB=OC.3.如图,CDAB于D点,BEAC于E点,BE,CD交于O点,且AO平分BAC.求证:OBOC.判定三角形全等的思路已知两边课堂小结课堂小结已知一边一角已知两角找夹角(SAS)找另一边(SSS)找任一角(AAS)边为角的对边边为角的一边找夹角

9、的另一边(SAS)找边的对角(AAS)找夹角的另一角(ASA)找夹边(ASA)找除夹边外的任意一边(AAS)课前复习课前复习家具厂生产一种餐桌,家具厂生产一种餐桌,1m3木材可做木材可做5张桌面张桌面或或30条桌腿。现在有条桌腿。现在有25m3木材,应怎样分配木材,应怎样分配木材,才能使生产出来的桌面和桌腿恰好配套木材,才能使生产出来的桌面和桌腿恰好配套(一张桌面配(一张桌面配4条桌腿)?共可生产多少张餐条桌腿)?共可生产多少张餐桌?桌?解:设用解:设用xm3木材生产桌面,用木材生产桌面,用ym3木材生产桌腿,木材生产桌腿,根据题意得根据题意得 x+y=25 5x4=30y应用二元一次方程组解

10、决实际问应用二元一次方程组解决实际问题的基本步骤题的基本步骤:理解问题理解问题(审题审题,搞清已知和未知搞清已知和未知,分析数量关系分析数量关系)制订计划制订计划(考虑如何考虑如何根据等量关系设元根据等量关系设元,列出方程列出方程组组)。执行计划(列出方程组并求解,得到答案)。执行计划(列出方程组并求解,得到答案)。回顾回顾(检查和反思解题过程检查和反思解题过程,检验答案的正确性以检验答案的正确性以及是否符合题意及是否符合题意).例例1:一根金属棒在一根金属棒在0时的长度是时的长度是q米米,温度每升高温度每升高 ,它就伸长,它就伸长p米米,当温度为当温度为t 时,金属棒的时,金属棒的长度长度l

11、可用公式可用公式l=pt+q计算计算已测得当已测得当t 时时l=米;米;当当t 时时l=米米()求()求p,q的值的值()若这根金属棒加热后长度伸长到()若这根金属棒加热后长度伸长到米,问此时金属棒的温度是多少?米,问此时金属棒的温度是多少?你能完成课本你能完成课本49页的作业题页的作业题3吗?吗?请试试看,相信你能行!请试试看,相信你能行!求公式中未知系数的这种方法,叫做求公式中未知系数的这种方法,叫做“待定系数法待定系数法”例例2:通过对一份中学生营养快餐的检测通过对一份中学生营养快餐的检测,得到以得到以下信息下信息:1.快餐总质量为快餐总质量为300克克2.快餐的成分快餐的成分:蛋白质蛋

12、白质,碳水化合物碳水化合物,脂肪脂肪,矿物质矿物质3.蛋白质和脂肪含量占蛋白质和脂肪含量占50%,矿物质含量是脂肪矿物质含量是脂肪含量的含量的2倍倍;蛋白质和碳水化合物含量占蛋白质和碳水化合物含量占85%,根据上述数据回答下面的问题根据上述数据回答下面的问题:(1)分别求出营养快餐中蛋白质分别求出营养快餐中蛋白质,碳水化合物碳水化合物,脂脂肪肪,矿物质的质量和所占百分比矿物质的质量和所占百分比;根据以上计算,可得下面的统计表:根据以上计算,可得下面的统计表:中学生营养快餐成分统计表中学生营养快餐成分统计表蛋白蛋白质质脂脂肪肪矿物矿物质质碳水化碳水化合物合物合计合计各种成分的各种成分的质量(质量

13、(g)各种成分所各种成分所占百分比(占百分比(%)135153012030045510401001 1:列二元一次方程组解应用题的关键是:列二元一次方程组解应用题的关键是:2:2:列二元一次方程组解应用题列二元一次方程组解应用题 的一般步骤分为:的一般步骤分为:找出两个等量关系(要求不同)找出两个等量关系(要求不同)审、设、列、解、检、答审、设、列、解、检、答回顾与反思实际问题分析分析抽象抽象方程(组)求解求解检验检验问题解决1.这节课你学到了哪些知识和方法这节课你学到了哪些知识和方法?2.你还有什么问题或想法需要和大家交流吗你还有什么问题或想法需要和大家交流吗?课本课本49页作业题第页作业题

14、第5题题 1.读懂统计图表的信息读懂统计图表的信息2.充分挖掘隐含的等量关系充分挖掘隐含的等量关系遇到有关图表的实际问题时遇到有关图表的实际问题时:1.小强和小明做算术题小强和小明做算术题,小强将第一个加数的后小强将第一个加数的后面多写一个零面多写一个零,所得和是所得和是2342;小明将第一个加小明将第一个加数的后面少写一个零数的后面少写一个零,所得和是所得和是65.求原来的两个求原来的两个加数分别是多少加数分别是多少?思考与练习2.A、B两地相距两地相距36千米,甲从千米,甲从A地步行到地步行到B地,地,乙从乙从B地步行到地步行到A地,两人同时相向出发,地,两人同时相向出发,4小时小时后两人相遇,后两人相遇,6小时后,甲剩余的路程是乙剩余小时后,甲剩余的路程是乙剩余路程的路程的2倍,求二人的速度?倍,求二人的速度?1 解:设第一个加数为解:设第一个加数为x,第二个加数为,第二个加数为y.根据题意得:根据题意得:42230651.0234210yxyxyx2 解:设甲、乙速度分别为解:设甲、乙速度分别为x千米千米/小时,小时,y千米千米/小时,根据题意得:小时,根据题意得:54)636(263636)(4yxyxyx

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(2022年湘教版八上《全等三角形的性质和判定的应用》立体精美课件.ppt)为本站会员(ziliao2023)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|