1、第五届卡西欧杯全国高中青年教师优秀课观摩与评比活动教案椭圆及其标准方程(第一课时)教学设计甘肃省张掖市实验中学雒淑英一、教材及学情分析本节课是全日制普通高级中学教科书(必修)数学(人民教育出版社中学数学室编著)第二册(上)第八章第一节椭圆及其标准方程第一课时。用一个平面去截一个对顶的圆锥,当平面与圆锥的轴夹角不同时,可以得到不同的截口曲线,它们分别是圆、椭圆、抛物线、双曲线,我们将这些曲线统称为圆锥曲线。圆锥曲线的发现与研究始于古希腊,当时人们从纯粹几何学的观点研究了这种与圆密切相关的曲线,它们的几何性质是圆的几何性质的自然推广。17世纪初期,笛卡尔发明了坐标系,人们开始在坐标系的基础上,用代
2、数方法研究圆锥曲线。在这一章中,我们将继续用坐标法探究圆锥曲线的几何特征,建立它们的方程,通过方程研究它们的简单性质,并用坐标法解决一些与圆锥曲线有关的简单几何问题和实际问题,进一步感受数形结合的基本思想。解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系。在第七章中学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形,在第八章,教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题。由于教材以椭圆为重点说明了求方程、利用方程讨论几何性质的一般方法,然后在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程
3、”起到了承上启下的重要作用。本节内容蕴含了许多重要的数学思想方法,如:数形结合思想、化归思想等。因此,教学时应重视体现数学的思想方法及价值。根据本节内容的特点,教学过程中可充分发挥信息技术的作用,用动态作图优势为学生的数学探究与数学思维提供支持。二、教学目标分析按照教学大纲的要求,根据教材分析和学情分析,确定如下教学目标:1知识与技能目标:理解椭圆的定义。掌握椭圆的标准方程,在化简椭圆方程的过程中提高学生的运算能力。2过程与方法目标:经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力。巩固用坐标化的方法求动点轨
4、迹方程。对学生进行数学思想方法的渗透,培养学生具有利用数学思想方法分析和解决问题的意识3情感态度价值观目标:充分发挥学生在学习中的主体地位,引导学生活动、观察、思考、合作、探究、归纳、交流、反思,促进形成研究氛围和合作意识重视知识的形成过程教学,让学生知其然并知其所以然,通过学习新知识体会到前人探索的艰辛过程与创新的乐趣通过对椭圆定义的严密化,培养学生形成扎实严谨的科学作风通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美利用椭圆知识解决实际问题,使学生感受到数学的广泛应用性和知识的力量,增强学习数学的兴趣和信心三、重、难点重点:椭圆的定义、椭圆的标准方程、坐标化的基
5、本思想难点:椭圆标准方程的推导与化简,坐标法的应用关键:含有两个根式的等式化简四、教法分析新课程倡导学生自主学习,要求教师成为学生学习的引导者、组织者、合作者和促进者,使教学过程成为师生交流、积极互动、共同发展的过程。本节课采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法,按照“创设情境学生实验意义建构形成理论知识应用回顾反思巩固提高”的程序设计教学过程,并以多媒体手段辅助教学,使学生经历实践、观察、猜想、论证、交流、反思等理性思维的基本过程,切实改进学生的学习方式,使学生真正成为学习的主人五、教学过程设计(一)创设情境提出问题用圆柱状水杯盛半杯水,将水杯放在水平桌面上,截面为圆
6、形当端起水杯喝水时,水杯倾斜,再观察水平面,此时截面为椭圆形看来,椭圆是与圆有着密切关系的一种曲线圆是到定点距离等于定长的点的轨迹,根据圆的定义,用一根细绳就可画出一个圆将细绳的一贯固定在黑板上,在另一端系上一支粉笔,将细绳绷紧并绕固定端点旋转一周即可将圆心从一点“分裂”成两点,将细绳的两端固定在这两点,用粉笔挑起细绳并绷紧,移动粉笔,可画出什么图形?设计意图:使学生产生学习兴趣和探索欲望(二)学生实验体验数学1学生通过动手实践、观察,猜想轨迹为椭圆2展示学生成果3动态演示动点生成轨迹的全过程,印证猜想4展示椭圆实际应用的幻灯片5导出新课:看来,大家对椭圆并不陌生,但细想想,我们对椭圆也说不上
7、有多熟悉,除了“她”的名字和容貌,我们对“她”的品性几乎还一无所知数学是一门严谨的科学,我们不能满足于直观感受、浅尝辄止,我们希望对椭圆有更深刻的认识,比如:椭圆上所有的点所具有的共同的几何特征是什么?椭圆的定义;能否用代数方法精确地刻画出这种共同的几何特征?椭圆的标准方程这就是我们这节课的重点内容设计意图:从学生实验中导出新课,明确研究课题(三)意义建构感知数学椭圆定义的初步生成学生每2人一组,合作探究,教师巡视指导请学生代表本小组交流探究结论:根据椭圆画法,从中归纳椭圆定义与两个定点的距离之和为定长(绳长)的点的轨迹为椭圆(绳长大于两定点间距离)(四)形成理论建立数学1椭圆定义的完善提出问
8、题:要想用上面那句话作为椭圆的定义,要保证它足够严密、经得起推敲那么,这个常数可以是任意正实数吗?有什么限制条件吗?引导学生回答:在“定义”中需要加上“常数”的限制。继续深化问题:若常数=或常数,情况会发生什么变化?应用平面几何中的“三角形任意两边之和大于第三边”、“两点之间线段最短”为理论依据,得出结论:当常数=时,与两个定点的距离之和等于常数的点的轨迹是线段;当常数0,则ab; 如果ab0,则ab; 如果ab=0,则a=b.要求学生明确要确定两个实数的大小,只需确定他们的差ab与0的大小关系。以上就是比较两个数(或式)的大小的方法差值比较法.其实差值比较法我们很早就已经用过了,请同学们回忆
9、一下哪里用过?(研究函数的单调性的时候,作差)下面我们再看几个比较大小的例题(二)范例启迪(例题由老师重点讲解,结合投影并简单板演示范)(出示例1)例1:试比较与的大小分析:其差为常数,学生很容易得到答案,对学生进行肯定与表扬解:(1)-=-()=-400 (出示例3)例3.当1x2时,比较与的大小分析:学生会发现例3与例2惊人的相似,学生想到的肯定先是做差和配方但是学生会得到以下结果:,发现不能判定正负,教师正好提醒,既然配方法不能用,还有其他的方法吗?从函数观点来看,顶点在x轴下方,图象开口向上,所以函数图象与x轴有两个交点,故方程是有根的,可以将解析式改为两根式表示,即将其因式分解。解:
10、 -=()()1x0, 0 ()()0 1时,与的大小(练习可以请三个学生上前板演)比较大小除了差值比较法之外,还有很多其他的方法。例:如何比较和的大小?如果学生自己找出答案应给予表扬,若学生思考无果,则如下引导:(1)和1哪个大? (2) 与1哪个大?学生恍然大悟:不等关系的传递性(间接比较大小的理论依据) 若ab,bc,则ac.例4:建筑设计规定,民用住宅的窗户面积必须小于地板面积。但按采光标准,窗户面积与地板面积的比值应不小于10%,且这个比值越大,住宅的采光条件越好。试问:同时增加相等的窗户面积和地板面积,住宅的采光条件是变好了,还是变坏了?请说明理由。分析:例2以建筑设计为背景,研究
11、比较大小在实际生活中的应用,这是一个难点.应该指导学生进行正确的审题。解:设住宅窗户面积和地板面积分别为和,同时增加的面积为,根据问题的要求,且. 由于,于是 ,又, 因此 所以,同时增加相等的窗户面积和地板面积后,住宅的采光条件变好了! 结论:一般地,设,为正实数,且,则 这是一个非常重要的不等式,其意思为:一个正的真分数,当分子和分母同时加上一个正数后得到的分数比原来的大。例如这个不等式在生活中还有一个模型。大家能否用这个不等式解释一下: 在一杯不太甜的糖水里加糖,糖水变甜了.设在g糖水里有g糖,此时糖水浓度为,在加入g糖后,这杯糖水的浓度为,按照常识可知.(四)思考交流(放映芭蕾舞演员的
12、表演视频)引言中的问题:为什么芭蕾舞演员在表演时脚尖立起给人一种美的享受?你们知道黄金分割吗?黄金分割是一个值0.618,一本书的短边长与长边长之比接近0.618时,视觉上要优美一些,而对于人的身材也是一样的。一个人的身材比例为0.618时是最优美的。一般的人,下半身长x(肚脐眼以下部分)与全身长y的比值在0.57-0.6之间,而芭蕾舞演员在演出时,脚尖立起调整了身段的比例.如果设人的脚尖立起提高了m,则下半身长与全身长之比由变成,这个比值更加接近黄金分割值0.618.实际的生活中,很多的女士为了追求美而选择穿高跟鞋,其目的就是在追求黄金分割值。实践作业:请大家回去为自己和家人量一量身材,也许
13、最美的东西就在你身边哦!如果是女性可以为她们设计高跟鞋的高度(是不是越高越好呢)。人员下半身长x(cm)全身长y(cm)鞋子高度m(cm)甲乙丙丁但是我们作为学生应该追求内在美,不能穿高跟鞋。(五)回顾与小结请同学们相互讨论:本节课你学到了哪些知识?(引导学生归纳本堂课的重要知识,重要方法)(1) 比较大小的方法:差值比较法;(2) 不等关系的传递性(间接比较大小的理论依据);(3) 比较大小在实际问题中的应用。(六)布置作业课本74页 课后思考交流2以及练习2教学设计说明现代教育心理学的研究认为,有效的性质概念教学是建立在学生已有知识结构基础上的,因此我在教学设计过程中注意了:在学生已有知识
14、结构和新知识间寻找“最近发展区”引导学生通过同化,顺应掌握新知识。设法走出“性质概念一带而过,演习作业铺天盖地”的误区,促使自己与学生一起走进“重视探究、重视交流、重视过程” 的新天地。 我认为本节课的设计应遵循教学的基本原则;注重对学生思维的发展;贯彻教师对本节内容的理解;体现“学思结合学用结合学习动机与意志品质相结合”的原则。希望对学生的思维品质的培养数学思想的建立心理品质的优化起到良好的作用 导数的概念教案广东省深圳市深圳中学 曾劲松本节课的教学内容选自人教社普通高中课程标准实验教科书(A版)数学选修22第一章第一节的变化率与导数,导数的概念是第2课时教学内容分析1导数的地位、作用导数是
15、微积分的核心概念之一,它是一种特殊的极限,反映了函数变化的快慢程度导数是求函数的单调性、极值、曲线的切线以及一些优化问题的重要工具,同时对研究几何、不等式起着重要作用导数概念是我们今后学习微积分的基础同时,导数在物理学,经济学等领域都有广泛的应用,是开展科学研究必不可少的工具.2本课内容剖析教材安排导数内容时,学生是没有学习极限概念的教材这样处理的原因,一方面是因为极限概念高度抽象,不适合在没有任何极限认识的基础上学习所以,让学生通过学习导数这个特殊的极限去体会极限的思想,这为今后学习极限提供了认识基础另一方面,函数是高中的重要数学概念,而导数是研究函数的有力工具,因此,安排先学习导数方便学生
16、学习和研究函数基于学生已经在高一年级的物理课程中学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度,再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型,并将瞬时变化率定义为导数,这是符合学生认知规律的进行导数概念教学时还应该看到,通过若干个特殊时刻的瞬时速度过渡到任意时刻的瞬时速度;从物体运动的平均速度的极限是瞬时速度过渡到函数的平均变化率的极限是瞬时变化率,我们可以向学生渗透从特殊到一般的研究问题基本思想教学目的1使学生认识到:当时间间隔越来越小时,运动物体在某一时刻附近的平均速度趋向于一个常数,并且这个常数就是物体在这一时刻的瞬时速度;2使学生通过运动物
17、体瞬时速度的探求,体会函数在某点附近的平均变化率的极限就是函数在该点的瞬时变化率,并由此建构导数的概念;3掌握利用求函数在某点的平均变化率的极限实现求导数的基本步骤;4通过导数概念的构建,使学生体会极限思想,为将来学习极限概念积累学习经验;5通过导数概念的教学教程,使学生体会到从特殊到一般的过程是发现事物变化规律的重要过程教学重点通过运动物体在某一时刻的瞬时速度的探求,抽象概括出函数导数的概念教学难点使学生体会运动物体在某一时刻的平均速度的极限意义,由此得出函数在某点平均变化率的极限就是函数在该点的瞬时变化率,并由此得出导数的概念教学准备1查找实际测速中测量瞬时速度的方法;2为学生每人准备一台
18、Tinspire CAS图形计算器,并对学生进行技术培训;3制作数学实验记录单及上课课件教学流程框图教学流程设计充分尊重学生认知事物的基本规律,使学生在操作感知的基础上形成导数概念的表象,再通过表象抽象出导数概念,并通过运用导数概念解决实际问题使学生进一步体会导数的本质教学的主要过程设计如下:复习准备理解平均速度与瞬时速度的区别与联系体会模型感受当t0时,平均速度逼近于某个常数提炼模型从形式上完成从平均速度向瞬时速度的过渡形成概念由物体运动的瞬时速度推广到函数瞬时变化率,并由此得出导数的定义应用概念理解导数概念,熟悉求导的步骤,应用计算结果解释瞬时变化率的意义小结作业通过师生共同小结,使学生进
19、一步感受极限思想对人类思维的重大影响教学过程设计预计时间(分)教学内容教师活动学生活动教学评价5分钟1复习准备设计意图:让学生理解平均速度与瞬时速度的区别与联系,感受到平均速度在时间间隔很小时可以近似地表示瞬时速度 (1)提问:请说出函数从x1到x2的平均变化率公式(2)提问:如果用x1与增量x表示平均变化率的公式是怎样的?(3)高台跳水的例子中,在时间段里的平均速度是零,而实际上运动员并不是静止的这说明平均速度不能准确反映他在这段时间里运动状态.(4)提问:用一个什么样的量来反映物体在某一时刻的运动状态?(5)提问:我们如何得到物体在某一时刻的瞬时速度?例如,要求物体在2S的瞬时速度,应该怎么解决?(6)我们一起来看物理中测即时速度(瞬时速度)的视频: (7)提问:这里所测得的真的是瞬时速度吗?(8)提问:怎样使平均速度更好的表示瞬时速度?(9)在学生回答的基础上讲述:真正的瞬时速度根本无法通过仪器测定,我们将平均速度作为瞬时速度的近似值;为了使平均速度更好的表示瞬时速度,应该让时间间隔尽量小回答问题后理解:(1)(2)(3)学生在教师的讲述中思考用什么量来反映运