1、一、升和毫升一、升和毫升 【认识容量和升】【认识容量和升】 1 1、 认识容量认识容量 容器所能容纳物体的大小,就是它的容量 为了准确测量或计算容器的容量,要用统一的容量单位:升或毫升。 2 2、 认识容量单位认识容量单位“升升” 计量水、油、饮料等液体的多少,通常用升升作单位,常用符号“L L”表示。 棱长是 1 分米的正方体容器的容量为 1 升 计量固体体积不能用升作单位 3 3、 感知对感知对 1 1 升的认识升的认识 1 升水大约能倒满 4 个纸杯,3 升水能倒满 4 个大碗,1 个大碗大约能装 3/4 升 水 1 升水正好能装满棱长为 1 分米(dm)的正方体容器。 【认识毫升】【认
2、识毫升】 1 1、 认识容量单位认识容量单位“毫升毫升” 计量比较少的液体,常用毫升毫升作单位,常用符号“mLmL”表示 棱长是 1 厘米的正方体容器的容量为 1 毫升 1 毫升大约只有十几滴水 2 2、 升与毫升的进率升与毫升的进率 升与毫升之间的进率是 1000,即 1 升=1000 毫升 3 3、 升与毫升的换算升与毫升的换算 升与毫升之间的换算与其他单位的换算方法一样,把高级单位换算成低级单位, 乘进率;把低级单位换算成高级单位,除以进率。 4 4、生活中的升和毫升的运用:、生活中的升和毫升的运用:生活中一杯水大约 250 毫升;一个高压锅大约盛 水 6 升;一个家用水池大约盛水 30
3、 升,一个脸盆大约盛水 10 升;一个浴缸大约 盛水 400 升;一个热水瓶的容量大约是 2 升,一个金鱼缸大约有水 30 升,一瓶 饮料大约是 400 毫升,一锅水有 5 升,一汤勺水有 10 毫升。 5 5、一个健康的成年人血液总量约为、一个健康的成年人血液总量约为 40004000-50005000 毫升。义务献血者每次献血毫升。义务献血者每次献血 量一般为量一般为 200200 毫升。毫升。 二、两三位数除以两位数二、两三位数除以两位数 【除数是两位数的除法】【除数是两位数的除法】 1 1、怎样计算除数是两位数的除法:、怎样计算除数是两位数的除法: 把除数看作和它接近的整十数试商。 计
4、算时从高位算起,先用被除数的前两位除以除数,如果被除数前两位比除数 小,就用前三位除以除数。 除到被除数的第几位,商就写在这一位上。 注意每次的余数要比除数小。 2 2、试商时,用四舍五入法将除数看作最接近的整十数来试商、试商时,用四舍五入法将除数看作最接近的整十数来试商 若除数看大,则初商可能偏小; 若除数看小,则初商可能偏大。 例例: : 36243,将 43 看作(40)来试商,此时初商可能(偏大); 36248,将 48 看作(50)来试商,此时初商可能(偏小)。 ()5356,若商是一位数,()里可以填(5,4,3,2,1),最大是(5); 若商是两位数,()里可以填(6,7,8,9
5、),最小是(6)。 439()4,若商是一位数,()里可以填(4,5,6,7,8,9),最小是(4); 若商是两位数,()里可以填(3,2,1),最大填(3)。 3 3、被除数、被除数除数除数= =商商余数余数 则 被除数=商除数余数 除数=(被除数余数)商 商=(被除数余数)除数 例:例:一个数是 786,除以某个数商是 24,余数是 18,求除数是多少? 解:(78618)24 =76824 =32 4 4、余数要比除数小:最小的余数是、余数要比除数小:最小的余数是 1 1;最大的余数;最大的余数= =除数除数 1 1。 例:例: ( )53=25,最小是 1,最大是 52。所以这道算 式
6、中, 最小的被除数=2553+1 =1325+1 =1326 最大的被除数=2553+52 =1325+52 =1377 【商不变的规律】【商不变的规律】 被除数和除数同时乘或除以一个相同的数(0 除外),商不变,若有余数,则不 完全商不变,余数同时乘或除以一个相同的数。 如:如: 143=42 (同时乘以 10) 14030=420 10030=310(同时除以 10)103=31 154=33 (同时乘以 3) 4512=39 8824=316 (同时除以 4) 226=34 问:乘或除以的这个数为什么不能是 0? 答:乘 0 或除以 0,都会出现除数是 0,这样的算式没有意义。 【连除实
7、际问题】【连除实际问题】 例:例:阅览室有两个书架,每个书架有 4 层,一共放了 224 本书。平均每个书架每 层放多少本书? 方法一:22424 方法二:224(24) 这样的问题从条件想起比较容易找到先求什么,再求什么;可以根据数量关系列 综合算式解答;可以用“把得数代入原题法”或“另解法”检验。 【简单的周期】【简单的周期】 同一事物依次重复出现叫作周期现象。同一事物依次重复出现叫作周期现象。 1、按周期排列的物体总是一组一组出现的,至少观察两组物体才能发现规律。 2、用排一排、画一画、圈一圈的方法能很快发现规律。 3、用除法解决周期现象中的问题比较方便。 三、观察物体三、观察物体 1、
8、从不同方向观察统一物体,看到的形状可能是不同的。 2、辨认从不同方向观察物体得到的图形 首先观察物体的样子和特点, 然后以观察者的角度想一想是在物体的哪个方向看 到的,把观察到的图形和题中的图形对照,得到正确的答案 3、 把一个长方体放在桌面上, 无论从哪个角度观察, 最多只能同时看到三个面。 4、我们通常观察物体的前面、右面和上面。 四、统计表和条形统计图四、统计表和条形统计图 1 1、统计表和条形统计图各有什么特点?、统计表和条形统计图各有什么特点? 统计表用表格呈现数据,条形统计图用直条呈现数据。 统计表和条形统计图都能清楚地看出统计的结果。 条形统计图的优点:能直观、形象地表示数量的多
9、少。 2 2、分段整理数据、分段整理数据 有时统计要分段整理数据,数据分段时,要注意每段之间要“连续”,整理数据 要按一定的顺序,做到数据不遗漏、不重复,还要注意检查统计表里的合计数。 3 3、平均数、平均数 平均数是描述一组数据集中趋势的统计特征量, 能较好地反映一组数据的总体情 况,它介于这组数据最多的和最少的数之间。 计算平均数的方法有两种:一种是移多补少(取长补短); 一种是先合再分,即用一组数据的和除以这组数据的个数。 平均数平均数= =总数总数总份数(人数);总份数(人数); 总数总数= =平均数平均数总份数总份数 4 4、运动与身体变化:、运动与身体变化:通常情况下,体育运动都会
10、引起脉搏的加快,而不同运动 量所引起的脉搏加快的程度也不一样。 五、解决问题的策略五、解决问题的策略 解决问题时可以通过列表、画线段图等方法进行分析。 解决问题的步骤:解决问题的步骤: 1. 理解题意(整理条件);2.分析数量关系;3.列式解答;4.检验反思。 分析数量关系:分析数量关系:可以从条件想起,看根据哪两个条件可以求出一个问题;也可以 从问题想起,看要求题目中的问题需要知道哪些条件。 六、可能性六、可能性 事件发生的可能性是有大小的。 判断事件发生的可能性大小,要先列举出整个事件中所有可能出现的结果,再根 据列举出的结果进行判断。 七、整数四则混合运算七、整数四则混合运算 运算顺序:
11、运算顺序: 1.在没有括号的算式里,只有加减法或者只有乘除法,要按照从左到右的顺 序依次计算。 2.在没有括号的算式里,既有乘、除法,又有加、减法,要先算乘、除法, 再算加、减法。 3.在含有小括号的算式里,要先算括号里面的,再算括号外的。 4.在一个算式里,既有小括号,又有中括号,要先算小括号里面的,再算中 括号里面的。 八、垂线与平行线八、垂线与平行线 1 1、线段、射线和直线的区别、线段、射线和直线的区别 名称名称 端点个数端点个数 延伸情况延伸情况 长度长度 线段 两个 不能向两端延伸 可以测量 射线 一个 只能向一端无限延伸 无法测量 直线 无 可以向两端无限延伸 无法测量 2 2、
12、两点之间线段最短。、两点之间线段最短。 3 3、距离、距离 连接两点的线段的长度叫作这两点间的距离。 4 4、角、角 从一点引出两条射线所组成的图形叫做角。角是由一个顶点和两条边组成的。角 的大小和角的两边张开的大小有关。 角通常用符号“”来表示,上图的角记作1,读作角一 5 5、认识量角器、认识量角器 (1)测量角的大小的工具是量角器量角器,量角器的中心有一个点叫做中心点中心点。量角 器上 180的刻度线与 90的刻度线相交的点是量角器的中心, 量角器上有两条 0 刻度线和两圈刻度。 量角器里按顺时针方向表示的刻度叫做外圈刻度; 量角器里按逆时针方向表示的刻度叫做内圈刻度。 (2 2)角的计
13、量单位是和表示符号:)角的计量单位是和表示符号:把半圆分成 180 等份,每一份所对的角就是 1 度的角。 “度”是计量角的单位, 用符号“”表示, 如 1 度记作 1, “” 要写在数字的右上角。 量角器是半圆形的。 把这个半圆平均分成 180 等份, 每一份所对的角是 1。 内圈刻度和外圈刻度分别是逆时针和顺时针方向排列的。 6 6、用量角器量角、用量角器量角 “三个重合、三个重合、一个注意一个注意” (1)点点重合:量角器的中心点与角的顶点重合 (2)线边重合:量角器的 0 刻度线与角的一条边重合 (3)线边重合:刻度线与另一条边重合,即读出几度 注意点:内圈刻度线与外圈刻度线不能混合使
14、用 7 7、角的分类、角的分类 直角=90 度 平角=180 度 周角=360 度 1 平角2 直角 1 周角2 平角4 直角 锐角小于 90 度 钝角大于 90 度且小于 180 度 常见判断题:常见判断题: 大于 90的角叫做钝角 ( ) 解析:大于 90 度且小于 180 度的角是钝角 平角就是一条直线( ) 解析:平角是由一点引出的两条射线所围成的图形,只不过这两条射线的方向刚好 相反。 周角就是一条射线( ) 解析:周角的两条射线重合,但不是一条射线。 8 8、垂线、垂线 两条直线相交成直角时,这两条直线互相垂直,其中一条直线是另一条直线的垂垂 线线,这两条直线的交点叫作垂足。 9
15、9、点到直线的距离、点到直线的距离 从直线外一点到这条直线所画的垂直线段的长度,叫作这点到直线的距离。 1010、平行线、平行线 在同一平面内,不相交的两条直线互相平行,其中一条直线是另一条直线的平行 线。 同一平面内两条直线的位置关系:同一平面内两条直线的位置关系: 9 9、一副三角尺的度数分别是:、一副三角尺的度数分别是:30 度、60 度、90 度和 45 度、45 度、90 度。 用一副三角尺还能画出 15 度 (60-45 或 45-30) 、 75 度 (45+30) 、 105 度 (60+45) 、 120 度(90+30)、135 度(90+45)和 150 度(90+60)的角。 10、两条平行线之间的垂直线段可以画无数条,长度都相等。 11、风筝线与地面所形成的角的度数越大,风筝飞得越高。 12、丹顶鹤结队飞行时通常排成“人”字形,角度一般保持在 110 度左右。 13、斜坡与地面的角度不同,物体滚的距离也不同。