1、52 解一元一次方程第1课时 利用合并同类项解一元一次方程教学目标课题5.2 第1课时 利用合并同类项解一元一次方程授课人素养目标1.会正确利用合并同类项解ax+bx=c类型的一元一次方程.2.通过解一元一次方程,体会解方程中的化归思想.教学重点建立方程解决实际问题,会解ax+bx=c类型的一元一次方程.教学难点根据实际问题建立方程模型.教学活动教学步骤师生活动活动一:回顾旧知,引入新知设计意图回顾等式的性质与合并同类项的法则,为解方程的学习作准备.【回顾导入】1.上节课我们学习了利用等式的性质解方程,请大家说一说等式的性质有哪些?(可让学生回答,课堂上一起回顾)2.合并下列各式的同类项:(1
2、)a+2a-4a;(2)-6xy-5+2yx+xy-3.(1)-a;(2)-3xy-8.【教学建议】 回顾旧知时,教师应关注学生是否忘记等式性质中“同一个数”;合并同类项,要关注学生是否能准确识别同类项,是否漏掉了负号.活动二:交流讨论,学习新知设计意图学习利用合并同类项解一元一次方程.探究点利用合并同类项解一元一次方程(教材P120问题1)某校三年共购买计算机140台,去年购买的数量是前年的2倍,今年购买的数量又是去年的2倍.前年这所学校购买了多少台计算机?问题1 你能根据题意列出方程吗?设前年购买计算机x台,则去年购买计算机2x台,今年购买计算机4x台.根据“三年共购买计算机140台”,可
3、以得到如下相等关系:前年购买量+去年购买量+今年购买量=140.列得方程x+2x+4x=140.问题2观察方程,等号左边有3个含x的未知数项,不能直接利用等式性质解这个方程.我们可以利用什么知识,将这个方程转化一下,以便顺利地求解呢?利用合并同类项的法则,把含有x的项合并同类项,得7x=140.问题3你能进一步求出方程的解吗?系数化为1,得x=20.因此,前年这所学校购买了20台计算机.思考(教材P120思考)上面解方程中“合并同类项”起了什么作用?合并同类项是一种恒等变形,通过合并同类项,减少项数,进而将方程转化为更接近x=m的形式.【对应训练】 教材P121练习第2题.【教学建议】给学生说
4、明,“系数化为1”指使方程由ax=b(a1)变形为x=m,它的依据是等式的性质2.系数化为1时,要避免出现以下几种错误:(1)颠倒除数与被除数的位置;(2)忽略未知数系数的符号.【教学建议】结合解方程的过程,让学生思考有关步骤(合并同类项)的作用,是为了反复渗透“解方程就是要使方程不断向x=m(常数)的形式转化”的化归思想.教学步骤师生活动活动三:熟练运用,巩固提升设计意图巩固用合并同类项解一元一次方程的方法,强化运算能力.例1(教材P120例1)解下列方程:(1)2x-52x=6-8;(2)7x-2.5x+3x-1.5x=-154-63.例2(教材P121例2)有一列数1,-3,9,-27,
5、81,-243,其中第n个数是(-3)n-1(n1).如果这列数中某三个相邻数的和是-1701.这三个数各是多少?分析:数的排列规律:后一个数=-3前一个数.某三个相邻数的和:前面的数+中间的数+后面的数=-1701.解:设所求三个数中的第1个数是x,则后两个数分别是-3x,9x.由三个数的和是-1701,得x-3x+9x=-1701.合并同类项,得7x=-1701. 系数化为1,得x=-243. 所以-3x=729,9x=-2187.答:这三个数是-243,729,-2187.【对应训练】教材P121练习第1,3题.【教学建议】给学生总结:例1中,解一元一次方程时,同类项有两类,即含未知数的
6、一次项和常数项.这两类都需要合并.【教学建议】让学生认识到:用一元一次方程解含多个未知数的问题时,通常先设其中一个为x,再根据其他未知数与x的关系,用含x的式子表示这些未知数.活动四:随堂训练,课堂总结【随堂训练】见创优作业“随堂小练”册子相应课时随堂训练.【课堂总结】师生一起回顾本节课所学主要内容,并请学生回答以下问题:1.今天我们学习的解方程,有哪些步骤?2.解一元一次方程时,合并同类项起了什么作用?3.系数化为1的依据是什么?4.含多个未知数时,怎样设未知数、列方程?【知识结构】【作业布置】1.教材P130习题5.2第1(1)(2),14题.2.创优作业主体本部分相应课时训练.板书设计5
7、.2解一元一次方程第1课时利用合并同类项解一元一次方程解一元一次方程:(1)合并同类项(2)系数化为1教学反思本节课先帮学生回顾等式的性质以及合并同类项的相关知识,为学习用合并同类项解一元一次方程作准备.教学中采用引导发现的方法,并鼓励学生自己动手,体现学生在课堂上的主体地位.在整个过程中注重调动学生的积极性,培养学生合作学习、主动探究的习惯.对于解一元一次方程的思路,灌输了将方程不断转化为x=m(常数)形式的化归思想,这一思想在后面几节课的学习中还会继续强化.解题大招 利用合并同类项解一元一次方程将含有未知数的项和常数项分别合并,再结合等式的性质,将方程转化为x=m(常数)的形式,注意计算时
8、不要出错.例1对于方程2y+3y-4y=1,合并同类项正确的是( A )A.y=1 B. -y=1 C.9y=1 D.- 9y=1例2下列说法正确的是( B )A.由x-3x=1,得2x=1 B.38m-0.125m=0,得m=0C.x=-3是方程x-3=0的解 D.以上说法都不对解析:A.由x-3x=1,得-2x=1,故A错误;B.由38m-0.125m=0,得0.25m=0,再将系数化为1,得m=0,故B正确,D错误;C.x=3是方程x-3=0的解,x=-3不是,故C错误.故选B.例3如果2x与x-3的值互为相反数,那么x的值为多少?解:因为2x与x-3的值互为相反数,所以2x+x-3=0
9、.方程两边加3,得2x+x=3.合并同类项,得3x=3.系数化为1,得x=1.故x的值为1.例4甲、乙、丙三人向某学校捐赠图书,已知这三人捐赠图书的册数之比是589.如果他们共捐了748册图书,那么这三人各捐了多少册图书?解:设甲捐了5x册图书,则乙捐了8x册图书,丙捐了9x册图书.根据题意,得5x+8x+9x=748.合并同类项,得22x=748.系数化为1,得x=34.所以5x=534=170,8x=834=272,9x=934=306.答:甲捐了170册图书,乙捐了272册图书,丙捐了306册图书.培优点月历中的数字问题例例 如图是某月的月历,在月历上任意圈出一个竖列上相邻的三个数,如果被圈出的三个数之和为51,求中间的那个数.分析:在月历中,每一横行,相邻的两个数之间相差1;每一竖列,相邻的两个数之间相差7.根据这种数量关系,列方程求解.解:设中间的那个数为x,则被圈出的三个数分别是x-7,x,x+7. 根据题意,得x-7+x+x+7=51.合并同类项,得3x=51.系数化为1,得x=17.答:中间的那个数为17.第 3 页 共 3 页