1、2024-2025学年安徽省合肥市肥东四中学初三5月抽测测试数学试题注意事项:1答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)12018的相反数是( )AB2018C-2018D2如图,矩形ABCD的边长AD=3,AB=2,E为AB的中点,F在边BC上,且BF=2FC,AF分别与DE、DB相交于点M,N,则MN的长为
2、( )ABCD3如图,是反比例函数图象,阴影部分表示它与横纵坐标轴正半轴围成的区域,在该区域内不包括边界的整数点个数是k,则抛物线向上平移k个单位后形成的图象是ABCD4如图,OABOCD,OA:OC3:2,A,C,OAB与OCD的面积分别是S1和S2,OAB与OCD的周长分别是C1和C2,则下列等式一定成立的是()ABCD5在下列四个汽车标志图案中,能用平移变换来分析其形成过程的图案是()ABCD6某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件个,依题意列方程为( )ABCD7如图,在平面直角坐标系中,点A在x
3、轴的正半轴上,点B的坐标为(0,4),将ABO绕点B逆时针旋转60后得到ABO,若函数y=(x0)的图象经过点O,则k的值为()A2B4C4D88如图所示是8个完全相同的小正方体组成的几何体,则该几何体的左视图是( )ABCD9在武汉市举办的“读好书、讲礼仪”活动中,某学校积极行动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书下面是七年级(1)班全体同学捐献图书的情况统计图,根据图中信息,该班平均每人捐书的册数是( )A3 B3.2 C4 D4.510某一超市在“五一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为小张这期间在该超市买商品获得了三次抽奖机
4、会,则小张( )A能中奖一次B能中奖两次C至少能中奖一次D中奖次数不能确定二、填空题(共7小题,每小题3分,满分21分)11已知双曲线经过点(1,2),那么k的值等于_.12分式方程的解是_13计算(5ab3)2的结果等于_14有一组数据:3,a,4,6,7,它们的平均数是5,则a_,这组数据的方差是_15如图,矩形ABCD中,AD=5,CAB=30,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是_16请写出一个一次函数的解析式,满足过点(1,0),且y随x的增大而减小_17如图,四边形ABCD内接于O,BD是O的直径,AC与BD相交于点E,AC=BC,DE=3,AD=
5、5,则O的半径为_三、解答题(共7小题,满分69分)18(10分)解方程:.19(5分)桌面上放有4张卡片,正面分别标有数字1,2,3,4,这些卡片除数字外完全相同把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍放反面朝上放回洗匀,乙从中任意抽出一张,记下卡片上的数字,然后将这两数相加(1)请用列表或画树状图的方法求两数和为5的概率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;反之则乙胜;若甲胜一次得12分,那么乙胜一次得多少分,才能使这个游戏对双方公平?20(8分)已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF求
6、证:EAAF21(10分)如图,已知ABC=90,AB=BC直线l与以BC为直径的圆O相切于点C点F是圆O上异于B、C的动点,直线BF与l相交于点E,过点F作AF的垂线交直线BC于点D如果BE=15,CE=9,求EF的长;证明:CDFBAF;CD=CE;探求动点F在什么位置时,相应的点D位于线段BC的延长线上,且使BC=CD,请说明你的理由22(10分)如图,矩形中,对角线,相交于点,且,动点,分别从点,同时出发,运动速度均为lcm/s点沿运动,到点停止点沿运动,点到点停留4后继续运动,到点停止连接,设的面积为(这里规定:线段是面积为0的三角形),点的运动时间为 (1)求线段的长(用含的代数式
7、表示);(2)求时,求与之间的函数解析式,并写出的取值范围;(3)当时,直接写出的取值范围23(12分)如图,在RtABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连结AD已知CAD=B求证:AD是O的切线若BC=8,tanB=,求O 的半径24(14分)如图,抛物线经过点A(2,0),点B(0,4).(1)求这条抛物线的表达式;(2)P是抛物线对称轴上的点,联结AB、PB,如果PBO=BAO,求点P的坐标;(3)将抛物线沿y轴向下平移m个单位,所得新抛物线与y轴交于点D,过点D作DEx轴交新抛物线于点E,射线EO交新抛物线于点F,如果EO=2OF,求m
8、的值.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】2018与-2018只有符号不同,由相反数的定义可得2018的相反数是-2018,故选C.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2、B【解析】过F作FHAD于H,交ED于O,于是得到FH=AB=1,根据勾股定理得到AF=,根据平行线分线段成比例定理得到,OH=AE=,由相似三角形的性质得到=,求得AM=AF=,根据相似三角形的性质得到=,求得AN=AF=,即可得到结论【详解】过F作FHAD于H,交ED于O,则FH=
9、AB=1BF=1FC,BC=AD=3,BF=AH=1,FC=HD=1,AF=,OHAE,=,OH=AE=,OF=FHOH=1=,AEFO,AMEFMO,=,AM=AF=,ADBF,ANDFNB,=,AN=AF=,MN=ANAM=,故选B构造相似三角形是本题的关键,且求长度问题一般需用到勾股定理来解决,常作垂线3、A【解析】依据反比例函数的图象与性质,即可得到整数点个数是5个,进而得到抛物线向上平移5个单位后形成的图象【详解】解:如图,反比例函数图象与坐标轴围成的区域内不包括边界的整数点个数是5个,即,抛物线向上平移5个单位后可得:,即,形成的图象是A选项故选A本题考查反比例函数图象上点的坐标特
10、征、反比例函数的图象、二次函数的性质与图象,解答本题的关键是明确题意,求出相应的k的值,利用二次函数图象的平移规律进行解答4、D【解析】A选项,在OABOCD中,OB和CD不是对应边,因此它们的比值不一定等于相似比,所以A选项不一定成立;B选项,在OABOCD中,A和C是对应角,因此,所以B选项不成立;C选项,因为相似三角形的面积比等于相似比的平方,所以C选项不成立;D选项,因为相似三角形的周长比等于相似比,所以D选项一定成立.故选D.5、D【解析】根据平移不改变图形的形状和大小,将题中所示的图案通过平移后可以得到的图案是D【详解】解:观察图形可知图案D通过平移后可以得到故选D本题考查图形的平
11、移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转6、A【解析】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,根据提前5天完成任务,列方程即可【详解】设原计划每天生产零件x个,则实际每天生产零件为1.5x个,由题意得,故选:A本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程即可7、C【解析】根据题意可以求得点O的坐标,从而可以求得k的值【详解】点B的坐标为(0,4),OB=4,作OCOB于点C,ABO绕点B逆时针旋转60后得到ABO,OB=OB=4,OC=4sin60=2,BC=4cos60
12、=2,OC=2,点O的坐标为:(2,2),函数y=(x0)的图象经过点O,2=,得k=4,故选C本题考查了反比例函数图象上点的坐标特征、坐标与图形的变化,解题的关键是利用数形结合的思想和反比例函数的性质解答8、A【解析】分析:根据主视图、左视图、俯视图是分别从物体正面、侧面和上面看所得到的图形,从而得出该几何体的左视图详解:该几何体的左视图是:故选A点睛:本题考查了学生的思考能力和对几何体三种视图的空间想象能力9、B【解析】七年级(1)班捐献图书的同学人数为918%=50人,捐献4册的人数为5030%=15人,捐献3册的人数为50-6-9-15-8=12人,所以该班平均每人捐书的册数为(6+9
13、2+123+154+85)50=3.2册,故选B.10、D【解析】由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生【详解】解:根据随机事件的定义判定,中奖次数不能确定故选D解答此题要明确概率和事件的关系:,为不可能事件;为必然事件;为随机事件二、填空题(共7小题,每小题3分,满分21分)11、1【解析】分析:根据点在曲线上点的坐标满足方程的关系,将点(1,2)代入,得:,解得:k112、x=13【解析】解分式方程的步骤:去分母;求出整式方程的解;检验;得出结论【详解】,去分母,可得x5=8,解得x=13,经检验:x=13是原方程的解本题主要考查了解分式方程,解分式方程时,去分母后
14、所得整式方程的解有可能使原方程中的分母为0,所以应检验13、25a2b1【解析】代数式内每项因式均平方即可.【详解】解:原式=25a2b1.本题考查了代数式的乘方.14、5 1 【解析】一组数据:3,a,4,6,7,它们的平均数是5,解得,1.故答案为5,1.15、5【解析】作点A关于直线CD的对称点E,作EPAC于P,交CD于点Q,此时QA+QP最短,由QA+QP=QE+PQ=PE可知,求出PE即可解决问题【详解】解:作点A关于直线CD的对称点E,作EPAC于P,交CD于点Q四边形ABCD是矩形,ADC=90,DQAE,DE=AD,QE=QA,QA+QP=QE+QP=EP,此时QA+QP最短
15、(垂线段最短),CAB=30,DAC=60,在RtAPE中,APE=90,AE=2AD=10,EP=AEsin60=10=5故答案为5本题考查矩形的性质、最短问题、锐角三角函数等知识,解题的关键是利用对称以及垂线段最短找到点P、Q的位置,属于中考常考题型16、y=x+1【解析】根据题意可以得到k的正负情况,然后写出一个符合要求的解析式即可解答本题【详解】一次函数y随x的增大而减小,k0,一次函数的解析式,过点(1,0),满足条件的一个函数解析式是y=-x+1,故答案为y=-x+1本题考查一次函数的性质,解答本题的关键是明确题意,写出符合要求的函数解析式,这是一道开放性题目,答案不唯一,只要符合
16、要去即可17、【解析】如图,作辅助线CF;证明CFAB(垂径定理的推论);证明ADAB,得到ADOC,ADECOE;得到AD:CO=DE:OE,求出CO的长,即可解决问题【详解】如图,连接CO并延长,交AB于点F;AC=BC,CFAB(垂径定理的推论);BD是O的直径,ADAB;设O的半径为r;ADOC,ADECOE,AD:CO=DE:OE,而DE=3,AD=5,OE=r-3,CO=r,5:r=3:(r-3),解得:r=,故答案为该题主要考查了相似三角形的判定及其性质、垂径定理的推论等几何知识点的应用问题;解题的关键是作辅助线,构造相似三角形,灵活运用有关定来分析、判断三、解答题(共7小题,满
17、分69分)18、 【解析】分析:此题应先将原分式方程两边同时乘以最简公分母,则原分式方程可化为整式方程,解出即可.详解:去分母,得 去括号,得 移项,得 合并同类项,得 系数化为1,得经检验,原方程的解为点睛:本题主要考查分式方程的解法.注意:解分式方程必须检验.19、(1)详见解析;(2)4分.【解析】(1)根据题意用列表法求出答案;(2)算出甲乙获胜的概率,从而求出乙胜一次的得分.【详解】(1)列表如下:由列表可得:P(数字之和为5),(2)因为P(甲胜),P(乙胜),甲胜一次得12分,要使这个游戏对双方公平,乙胜一次得分应为:1234分.本题考查概率问题中的公平性问题,解决本题的关键是计
18、算出各种情况的概率,然后比较即可.20、见解析【解析】根据条件可以得出AD=AB,ABF=ADE=90,从而可以得出ABFADE,就可以得出FAB=EAD,就可以得出结论【详解】证明:四边形ABCD是正方形,AB=AD,ABC=D=BAD=90,ABF=90在BAF和DAE中, ,BAFDAE(SAS),FAB=EAD,EAD+BAE=90,FAB+BAE=90,FAE=90,EAAF21、(1) (2)证明见解析(3)F在直径BC下方的圆弧上,且【解析】(1)由直线l与以BC为直径的圆O相切于点C,即可得BCE=90,BFC=CFE=90,则可证得CEFBEC,然后根据相似三角形的对应边成比
19、例,即可求得EF的长;(2)由FCD+FBC=90,ABF+FBC=90,根据同角的余角相等,即可得ABF=FCD,同理可得AFB=CFD,则可证得CDFBAF;由CDFBAF与CEFBCF,根据相似三角形的对应边成比例,易证得,又由AB=BC,即可证得CD=CE;(3)由CE=CD,可得BC= CD=CE,然后在RtBCE中,求得tanCBE的值,即可求得CBE的度数,则可得F在O的下半圆上,且.【详解】(1)解:直线l与以BC为直径的圆O相切于点CBCE=90,又BC为直径,BFC=CFE=90,FEC=CEB,CEFBEC,BE=15,CE=9,即:,解得:EF= ;(2)证明:FCD+
20、FBC=90,ABF+FBC=90,ABF=FCD,同理:AFB=CFD,CDFBAF;CDFBAF,又FCE=CBF,BFC=CFE=90,CEFBCF,又AB=BC,CE=CD;(3)解:CE=CD,BC=CD=CE,在RtBCE中,tanCBE=,CBE=30,故 为60,F在直径BC下方的圆弧上,且考查了相似三角形的判定与性质,圆的切线的性质,圆周角的性质以及三角函数的性质等知识此题综合性很强,解题的关键是方程思想与数形结合思想的应用22、(1)当0x1时,PD=1-x,当1x14时,PD=x-1(2)y=;(3)5x9【解析】(1)分点P在线段CD或在线段AD上两种情形分别求解即可(
21、2)分三种情形:当5x1时,如图1中,根据y=SDPB,求解即可当1x9时,如图2中,根据y=SDPB,求解即可9x14时,如图3中,根据y=SAPQ+SABQ-SPAB计算即可(3)根据(2)中结论即可判断【详解】解:(1)当0x1时,PD=1-x,当1x14时,PD=x-1(2)当5x1时,如图1中,四边形ABCD是矩形,OD=OB,y=SDPB=(1-x)6=(1-x)=12-x当1x9时,如图2中,y=SDPB=(x-1)1=2x-29x14时,如图3中,y=SAPQ+SABQ-SPAB=(14-x)(x-4)+1(tx-4)-1(14-x)=-x2+x-11综上所述,y=(3)由(2
22、)可知:当5x9时,y=SBDP本题属于四边形综合题,考查了矩形的性质,三角形的面积等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型23、(1)证明见解析;(2).【解析】(1)连接OD,由OD=OB,利用等边对等角得到一对角相等,再由已知角相等,等量代换得到1=3,求出4为90,即可得证;(2)设圆的半径为r,利用锐角三角函数定义求出AB的长,再利用勾股定理列出关于r的方程,求出方程的解即可得到结果【详解】(1)证明:连接,在中,则为圆的切线;(2)设圆的半径为,在中,根据勾股定理得:,在中,根据勾股定理得:,在中,即,解得:此题考查了切线的判定与性质,以及勾股定
23、理,熟练掌握切线的判定与性质是解本题的关键24、(1);(2)P(1,); (3)3或5.【解析】(1)将点A、B代入抛物线,用待定系数法求出解析式.(2)对称轴为直线x=1,过点P作PGy轴,垂足为G, 由PBO=BAO,得tanPBO=tanBAO,即,可求出P的坐标.(3)新抛物线的表达式为,由题意可得DE=2,过点F作FHy轴,垂足为H,DEFH,EO=2OF,FH=1.然后分情况讨论点D在y轴的正半轴上和在y轴的负半轴上,可求得m的值为3或5.【详解】解:(1)抛物线经过点A(2,0),点B(0,4),解得,抛物线解析式为,(2),对称轴为直线x=1,过点P作PGy轴,垂足为G,PBO=BAO,tanPBO=tanBAO,,,,,P(1,),(3)设新抛物线的表达式为则,,DE=2过点F作FHy轴,垂足为H,DEFH,EO=2OF,FH=1.点D在y轴的正半轴上,则,,,m=3,点D在y轴的负半轴上,则,,,m=5,综上所述m的值为3或5.本题是二次函数和相似三角形的综合题目,整体难度不大,但是非常巧妙,学会灵活运用是关键.