1、2023年高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
2、1二项式展开式中,项的系数为( )ABCD2为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )A12种B24种C36种D48种3已知为两条不重合直线,为两个不重合平面,下列条件中,的充分条件是( )ABCD4己知全集为实数集R,集合A=x|x2 +2x-80,B=x|log2x0,得x-4或x2,A=x|x2 +2x-80x| x-4或x2,由log2x1,x0,得0x2,B=x|log2x1 x |0x2,则,.故选:D.【点睛】本
3、题考查了交、并、补集的混合运算,考查了对数不等式,二次不等式的求法,是基础题.5、C【解析】根据等比数列的下标和性质可求出,便可得出等比数列的公比,再根据等比数列的性质即可求出.【详解】,又,可解得或设等比数列的公比为,则当时, ;当时, ,.故选:C【点睛】本题主要考查等比数列的性质应用,意在考查学生的数学运算能力,属于基础题.6、D【解析】根据的图象可得的单调性,从而得到在相应范围上的符号和极值点,据此可判断的图象.【详解】由的图象可知,在上为增函数,且在上存在正数,使得在上为增函数,在为减函数,故在有两个不同的零点,且在这两个零点的附近,有变化,故排除A,B.由在上为增函数可得在上恒成立
4、,故排除C.故选:D.【点睛】本题考查导函数图象的识别,此类问题应根据原函数的单调性来考虑导函数的符号与零点情况,本题属于基础题.7、A【解析】解一元二次不等式化简集合A,再根据对数的真数大于零化简集合B,求交集运算即可.【详解】由可得,所以,由可得,所以,所以,故选A【点睛】本题主要考查了集合的交集运算,涉及一元二次不等式解法及对数的概念,属于中档题.8、C【解析】根据双曲线方程求出渐近线方程:,再将点代入可得,连接,根据圆的性质可得,从而可求出,再由即可求解.【详解】由双曲线,则渐近线方程:, 连接,则,解得,所以,解得.故双曲线方程为.故选:C【点睛】本题考查了双曲线的几何性质,需掌握双
5、曲线的渐近线求法,属于中档题.9、A【解析】先由两直线垂直的条件判断出命题p的真假,由基本不等式判断命题q的真假,从而得出p,q的非命题的真假,继而判断复合命题的真假,可得出选项.【详解】已知对于命题,由得,所以命题为假命题;关于命题,函数,当时,当即时,取等号,当时,函数没有最小值,所以命题为假命题.所以和是真命题,所以为假命题,为假命题,为假命题,为真命题,所以真命题的个数为1个.故选:A.【点睛】本题考查直线的垂直的判定和基本不等式的应用,以及复合命题的真假的判断,注意运用基本不等式时,满足所需的条件,属于基础题.10、B【解析】首先由三视图还原几何体,进一步求出几何体的棱长【详解】解:
6、根据三视图还原几何体如图所示,所以,该四棱锥体的最长的棱长为故选:B【点睛】本题主要考查由三视图还原几何体,考查运算能力和推理能力,属于基础题11、C【解析】假设若甲被录用了,若乙被录用了,若丙被录用了,再逐一判断即可.【详解】解:若甲被录用了,则甲的说法错误,乙,丙的说法正确,满足题意,若乙被录用了,则甲、乙的说法错误,丙的说法正确,不符合题意,若丙被录用了,则乙、丙的说法错误,甲的说法正确,不符合题意,综上可得甲被录用了,故选:C.【点睛】本题考查了逻辑推理能力,属基础题.12、B【解析】执行给定的程序框图,输入,逐次循环,找到计算的规律,即可求解.【详解】由题意,执行给定的程序框图,输入
7、,可得:第1次循环:;第2次循环:;第3次循环:;第10次循环:,此时满足判定条件,输出结果,故选:B.【点睛】本题主要考查了循环结构的程序框图的计算与输出,其中解答中认真审题,逐次计算,得到程序框图的计算功能是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】利用直线与圆相切求出斜率,得到直线的方程,几何法求出【详解】解:直线与圆相切,圆心为由,得或,当时,到直线的距离,不成立,当时,与圆相交于,两点,到直线的距离,故答案为【点睛】考查直线与圆的位置关系,相切和相交问题,属于中档题14、【解析】由题意可得,又,数列的奇数
8、项为首项为1,公差为2的等差数列,对分奇数和偶数两种情况,分别求出,从而得到数列的通项公式.【详解】解:,得:,又,数列的奇数项为首项为1,公差为2的等差数列,当为奇数时,当为偶数时,则为奇数,数列的通项公式,故答案为:.【点睛】本题考查求数列的通项公式,解题关键是由已知递推关系得出,从而确定数列的奇数项成等差数列,求出通项公式后再由已知求出偶数项,要注意结果是分段函数形式15、【解析】根据题意,建立棱锥体积的函数,利用导数求函数的最大值即可.【详解】设底面边长为,则斜高为,即此四棱锥的高为,所以此四棱锥体积为,令,令,易知函数在时取得最大值.故此时底面棱长.故答案为:.【点睛】本题考查棱锥体
9、积的求解,涉及利用导数研究体积最大值的问题,属综合中档题.16、.【解析】配方求出顶点,作出图像,求出对应的自变量,结合函数图像,即可求解.【详解】,顶点为因为函数的值域是,令,可得或.又因为函数图象的对称轴为,且,所以的取值范围为.故答案为:.【点睛】本题考查函数值域,考查数形结合思想,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)定值为0.【解析】(1)根据直线方程求焦点坐标,即得c,再根据离心率得,(2)先设直线方程以及各点坐标,化简,再联立直线方程与椭圆方程,利用韦达定理代入化简得结果.【详解】(1)因为直线过椭圆的右焦点,所以,因为离心率
10、为,所以,(2),设直线,则因此由得,所以,因此即【点睛】本题考查椭圆方程以及直线与椭圆位置关系,考查综合分析求解能力,属中档题.18、(1)当时, 无极值;当时, 极小值为;(2).【解析】(1)求导,对参数进行分类讨论,即可容易求得函数的极值;(2)构造函数,两次求导,根据函数单调性,由恒成立问题求参数范围即可.【详解】(1)依题, 当时,函数在上单调递增,此时函数无极值; 当时,令,得,令,得所以函数在上单调递增,在上单调递减. 此时函数有极小值,且极小值为. 综上:当时,函数无极值;当时,函数有极小值,极小值为.(2)令易得且, 令所以,因为,从而,所以,在上单调递增. 又若,则所以在
11、上单调递增,从而,所以时满足题意. 若,所以,在中,令,由(1)的单调性可知,有最小值,从而. 所以 所以,由零点存在性定理:,使且在上单调递减,在上单调递增. 所以当时,.故当,不成立.综上所述:的取值范围为.【点睛】本题考查利用导数研究含参函数的极值,涉及由恒成立问题求参数范围的问题,属压轴题.19、(1)l: ,C方程为 ;(2)【解析】(1)直接利用转换关系,把参数方程极坐标方程和直角坐标方程之间进行转换(2)利用一元二次方程根和系数关系式的应用求出结果【详解】(1)曲线C的参数方程为(m为参数),两式相加得到,进一步转换为直线l的极坐标方程为cos(+)1,则 转换为直角坐标方程为(
12、2)将直线的方程转换为参数方程为(t为参数),代入得到(t1和t2为P、Q对应的参数),所以,所以【点睛】本题考查参数方程极坐标方程和直角坐标方程之间的转换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型20、 ()见解析;()当时,函数的最小值是;当时,函数的最小值是【解析】(1)求出导函数,并且解出它的零点x=,再分区间讨论导数的正负,即可得到函数f(x)的单调区间;(2)分三种情况加以讨论,结合函数的单调性与函数值的大小比较,即可得到当0aln 2时,函数f(x)的最小值是-a;当aln2时,函数f(x)的最小值是ln2-2a【详解】函数的定义
13、域为因为,令,可得;当时,;当时,综上所述:可知函数的单调递增区间为,单调递减区间为当,即时,函数在区间上是减函数,的最小值是当,即时,函数在区间上是增函数,的最小值是当,即时,函数在上是增函数,在上是减函数又,当时,的最小值是;当时,的最小值为综上所述,结论为当时,函数的最小值是;当时,函数的最小值是.【点睛】求函数极值与最值的步骤:(1) 确定函数的定义域;(2) 求导数;(3) 解方程求出函数定义域内的所有根;(4) 列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值. (5)如果只有一个极值点,则在该处即是极值也是最值
14、;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小21、(1);(2)【解析】(1),对函数求导,分别求出和,即可求出在点处的切线方程;(2)对求导,分、和三种情况讨论的单调性,再结合在上恒成立,可求得的取值范围.【详解】(1)因为,所以,所以,则,故曲线在点处的切线方程为.(2)因为,所以,当时,在上恒成立,则在上单调递增,从而成立,故符合题意;当时,令,解得,即在上单调递减,则,故不符合题意;当时,在上恒成立,即在上单调递减,则,故不符合题意.综上,的取值范围为.【点睛】本题考查了曲线的切线方程的求法,考查了利用导数研究函数的单调性,考查了不等式恒成立问题,利用分类讨论是解决
15、本题的较好方法,属于中档题.22、(1)答案不唯一,具体见解析(2)【解析】(1)由于函数,得出,分类讨论当和时,的正负,进而得出的单调性;(2)求出,令,得,设,通过导函数,可得出在上的单调性和值域,再分类讨论和时,的单调性,再结合,恒成立,即可求出的取值范围.【详解】解:(1)因为, 所以,当时,在上单调递减.当时,令,则;令,则,所以在单调递增,在上单调递减.综上所述,当时,在上单调递减;当时,在上单调递增,在上单调递减.(2)因为,可知,令,得.设,则.当时,在上单调递增,所以在上的值域是,即.当时,没有实根,且,在上单调递减,符合题意.当时,所以有唯一实根,当时,在上单调递增,不符合题意.综上,即的取值范围为.【点睛】本题考查利用导数研究函数的单调性和根据恒成立问题求参数范围,还运用了构造函数法,还考查分类讨论思想和计算能力,属于难题.