1、专题32 函数与几何综合问题(25题)一、填空题1(2023四川眉山统考中考真题)如图,在平面直角坐标系中,点B的坐标为,过点B分别作x轴、y轴的垂线,垂足分别为点C、点A,直线与交于点D与y轴交于点E动点M在线段上,动点N在直线上,若是以点N为直角顶点的等腰直角三角形,则点M的坐标为 2(2023四川自贡统考中考真题)如图,直线与x轴,y轴分别交于A,B两点,点D是线段AB上一动点,点H是直线上的一动点,动点,连接当取最小值时,的最小值是 3(2023江苏无锡统考中考真题)二次函数的图像与x轴交于点、,与轴交于点,过点的直线将分成两部分,这两部分是三角形或梯形,且面积相等,则的值为 二、解答
2、题4(2023黑龙江牡丹江统考中考真题)如图,在平面直角坐标系中,的顶点B,C在x轴上,D在y轴上,的长是方程的两个根()请解答下列问题:(1)求点B的坐标;(2)若,直线分别交x轴、y轴、于点E,F,M,且M是的中点,直线交延长线于点N,求的值;(3)在(2)的条件下,点P在y轴上,在直线EF上是否存在点Q,使是腰长为5的等腰三角形?若存在,请直接写出等腰三角形的个数和其中两个点Q的坐标;若不存在,请说明理由5(2023湖南统考中考真题)如图,点A,B,C在上运动,满足,延长至点D,使得,点E是弦上一动点(不与点A,C重合),过点E作弦的垂线,交于点F,交的延长线于点N,交于点M(点M在劣弧
3、上)(1)是的切线吗?请作出你的判断并给出证明;(2)记的面积分别为,若,求的值;(3)若的半径为1,设,试求y关于x的函数解析式,并写出自变量x的取值范围6(2023湖南统考中考真题)我们约定:若关于x的二次函数与同时满足,则称函数与函数互为“美美与共”函数根据该约定,解答下列问题:(1)若关于x的二次函数与互为“美美与共”函数,求k,m,n的值;(2)对于任意非零实数r,s,点与点始终在关于x的函数的图像上运动,函数与互为“美美与共”函数求函数的图像的对称轴;函数的图像是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x的二次
4、函数与它的“美美与共”函数的图像顶点分别为点A,点B,函数的图像与x轴交于不同两点C,D,函数的图像与x轴交于不同两点E,F当时,以A,B,C,D为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不请说明理由7(2023江苏无锡统考中考真题)如图,四边形是边长为的菱形,点为的中点,为线段上的动点,现将四边形沿翻折得到四边形(1)当时,求四边形的面积;(2)当点在线段上移动时,设,四边形的面积为,求关于的函数表达式8(2023江苏徐州统考中考真题)如图,在平而直角坐标系中,二次函数的图象与轴分别交于点,顶点为连接,将线段绕点按顺时针方向旋转得到线段,连接点分别在线段上,连接与交于点
5、(1)求点的坐标;(2)随着点在线段上运动的大小是否发生变化?请说明理由;线段的长度是否存在最大值?若存在,求出最大值;若不存在,请说明理由;(3)当线段的中点在该二次函数的因象的对称轴上时,的面积为 9(2023内蒙古统考中考真题)如图,在平面直角坐标系中,抛物线交轴于点,直线交抛物线于两点(点在点的左侧),交轴于点,交轴于点(1)求点的坐标;(2)是线段上一点,连接,且求证:是直角三角形;的平分线交线段于点是直线上方抛物线上一动点,当时,求点的坐标10(2023吉林统考中考真题)如图,在正方形中,点是对角线的中点,动点,分别从点,同时出发,点以的速度沿边向终点匀速运动,点以的速度沿折线向终
6、点匀速运动连接并延长交边于点,连接并延长交折线于点,连接,得到四边形设点的运动时间为()(),四边形的面积为()(1)的长为_,的长为_(用含x的代数式表示)(2)求关于的函数解析式,并写出自变量的取值范围(3)当四边形是轴对称图形时,直接写出的值11(2023广东统考中考真题)综合运用如图1,在平面直角坐标系中,正方形的顶点A在轴的正半轴上,如图2,将正方形绕点逆时针旋转,旋转角为,交直线于点,交轴于点(1)当旋转角为多少度时,;(直接写出结果,不要求写解答过程)(2)若点,求的长;(3)如图3,对角线交轴于点,交直线于点,连接,将与的面积分别记为与,设,求关于的函数表达式12(2023湖北
7、黄冈统考中考真题)已知抛物线与x轴交于两点,与y轴交于点,点P为第一象限抛物线上的点,连接(1)直接写出结果;_,_,点A的坐标为_,_;(2)如图1,当时,求点P的坐标;(3)如图2,点D在y轴负半轴上,点Q为抛物线上一点,点E,F分别为的边上的动点,记的最小值为m求m的值;设的面积为S,若,请直接写出k的取值范围13(2023湖北宜昌统考中考真题)如图,已知点E位于第二象限且在直线上,连接(1)直接判断的形状:是_三角形;(2)求证:;(3)直线EA交x轴于点将经过B,C两点的抛物线向左平移2个单位,得到抛物线若直线与抛物线有唯一交点,求t的值;若抛物线的顶点P在直线上,求t的值;将抛物线
8、再向下平移,个单位,得到抛物线若点D在抛物线上,求点D的坐标14(2023山东滨州统考中考真题)如图,在平面直角坐标系中,菱形的一边在轴正半轴上,顶点的坐标为,点是边上的动点,过点作交边于点,作交边于点,连接设的面积为(1)求关于的函数解析式;(2)当取何值时,的值最大?请求出最大值15(2023天津统考中考真题)在平面直角坐标系中,O为原点,菱形的顶点,矩形的顶点(1)填空:如图,点C的坐标为_,点G的坐标为_;(2)将矩形沿水平方向向右平移,得到矩形,点E,F,G,H的对应点分别为,设,矩形与菱形重叠部分的面积为S如图,当边与相交于点M、边与相交于点N,且矩形与菱形重叠部分为五边形时,试用
9、含有t的式子表示S,并直接写出t的取值范围:当时,求S的取值范围(直接写出结果即可)16(2023浙江温州统考中考真题)如图1,为半圆的直径,为延长线上一点,切半圆于点,交延长线于点,交半圆于点,已知,如图,连接,为线段上一点,过点作的平行线分别交,于点,过点作于点设,(1)求的长和关于的函数表达式(2)当,且长度分别等于,的三条线段组成的三角形与相似时,求的值(3)延长交半圆于点,当时,求的长17(2023新疆统考中考真题)【建立模型】(1)如图,点是线段上的一点,垂足分别为,求证:;【类比迁移】(2)如图,一次函数的图象与轴交于点、与轴交于点,将线段绕点逆时针旋转得到、直线交轴于点求点的坐
10、标;求直线的解析式;【拓展延伸】(3)如图,抛物线与轴交于,两点点在点的左侧,与轴交于点,已知点,连接抛物线上是否存在点,使得,若存在,求出点的横坐标18(2023江苏连云港统考中考真题)【问题情境建构函数】(1)如图1,在矩形中,是的中点,垂足为设,试用含的代数式表示【由数想形新知初探】(2)在上述表达式中,与成函数关系,其图像如图2所示若取任意实数,此时的函数图像是否具有对称性?若有,请说明理由,并在图2上补全函数图像【数形结合深度探究】(3)在“取任意实数”的条件下,对上述函数继续探究,得出以下结论:函数值随的增大而增大;函数值的取值范围是;存在一条直线与该函数图像有四个交点;在图像上存
11、在四点,使得四边形是平行四边形其中正确的是_(写出所有正确结论的序号)【抽象回归拓展总结】(4)若将(1)中的“”改成“”,此时关于的函数表达式是_;一般地,当取任意实数时,类比一次函数、反比例函数、二次函数的研究过程,探究此类函数的相关性质(直接写出3条即可)19(2023四川凉山统考中考真题)阅读理解题:阅读材料:如图1,四边形是矩形,是等腰直角三角形,记为、为,若,则证明:设,易证,若时,当,则同理:若时,当,则根据上述材料,完成下列问题:如图2,直线与反比例函数的图象交于点,与轴交于点将直线绕点顺时针旋转后的直线与轴交于点,过点作轴于点,过点作轴于点,已知(1)求反比例函数的解析式;(
12、2)直接写出的值;(3)求直线的解析式20(2023山东泰安统考中考真题)如图1,二次函数的图象经过点(1)求二次函数的表达式;(2)若点P在二次函数对称轴上,当面积为5时,求P坐标;(3)小明认为,在第三象限抛物线上有一点D,使;请判断小明的说法是否正确,如果正确,请求出D的坐标;如果不正确,请说明理由21(2023湖北恩施统考中考真题)在平面直角坐标系中,为坐标原点,已知抛物线与轴交于点,抛物线的对称轴与轴交于点(1)如图,若,抛物线的对称轴为求抛物线的解析式,并直接写出时的取值范围;(2)在(1)的条件下,若为轴上的点,为轴上方抛物线上的点,当为等边三角形时,求点,的坐标;(3)若抛物线
13、经过点,且,求正整数m,n的值22(2023辽宁营口统考中考真题)如图,抛物线与轴交于点和点,与轴交于点,抛物线的对称轴交轴于点,过点作直线轴,过点作,交直线于点(1)求抛物线的解析式;(2)如图,点为第三象限内抛物线上的点,连接和交于点,当时求点的坐标;(3)在(2)的条件下,连接,在直线上是否存在点,使得?若存在,请直接写出点F的坐标;若不存在,请说明理由23(2023山东日照统考中考真题)在平面直角坐标系内,抛物线交y轴于点C,过点C作x轴的平行线交该抛物线于点D(1)求点C,D的坐标;(2)当时,如图1,该抛物线与x轴交于A,B两点(点A在点B的左侧),点P为直线上方抛物线上一点,将直
14、线沿直线翻折,交x轴于点,求点P的坐标;(3)坐标平面内有两点,以线段为边向上作正方形若,求正方形的边与抛物线的所有交点坐标;当正方形的边与该抛物线有且仅有两个交点,且这两个交点到x轴的距离之差为时,求a的值24(2023江苏无锡统考中考真题)已知二次函数的图像与轴交于点,且经过点和点(1)请直接写出,的值;(2)直线交轴于点,点是二次函数图像上位于直线下方的动点,过点作直线的垂线,垂足为求的最大值;若中有一个内角是的两倍,求点的横坐标25(2023辽宁统考中考真题)如图,抛物线与轴交于点和点,与轴交于点,点在抛物线上(1)求抛物线的解析式;(2)点在第一象限内,过点作轴,交于点,作轴,交抛物线于点,点在点的左侧,以线段为邻边作矩形,当矩形的周长为11时,求线段的长;(3)点在直线上,点在平面内,当四边形是正方形时,请直接写出点的坐标