2024年中考数学二轮题型突破题型11 综合探究题 类型2 与动点有关的探究题(专题训练)(学生版).docx

上传人(卖家):现有分享 文档编号:8207617 上传时间:2025-01-04 格式:DOCX 页数:12 大小:561.02KB
下载 相关 举报
2024年中考数学二轮题型突破题型11 综合探究题 类型2 与动点有关的探究题(专题训练)(学生版).docx_第1页
第1页 / 共12页
2024年中考数学二轮题型突破题型11 综合探究题 类型2 与动点有关的探究题(专题训练)(学生版).docx_第2页
第2页 / 共12页
2024年中考数学二轮题型突破题型11 综合探究题 类型2 与动点有关的探究题(专题训练)(学生版).docx_第3页
第3页 / 共12页
2024年中考数学二轮题型突破题型11 综合探究题 类型2 与动点有关的探究题(专题训练)(学生版).docx_第4页
第4页 / 共12页
2024年中考数学二轮题型突破题型11 综合探究题 类型2 与动点有关的探究题(专题训练)(学生版).docx_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、类型二 与动点有关的探究题(专题训练)1(2023浙江绍兴统考中考真题)在平行四边形中(顶点按逆时针方向排列),为锐角,且(1)如图1,求边上的高的长(2)是边上的一动点,点同时绕点按逆时针方向旋转得点如图2,当点落在射线上时,求的长当是直角三角形时,求的长2.在数学兴趣小组活动中,小亮进行数学探究活动(1)是边长为3的等边三角形,E是边上的一点,且,小亮以为边作等边三角形,如图1,求的长;(2)是边长为3的等边三角形,E是边上的一个动点,小亮以为边作等边三角形,如图2,在点E从点C到点A的运动过程中,求点F所经过的路径长;(3)是边长为3的等边三角形,M是高上的一个动点,小亮以为边作等边三角

2、形,如图3,在点M从点C到点D的运动过程中,求点N所经过的路径长;(4)正方形的边长为3,E是边上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形,其中点F、G都在直线上,如图4,当点E到达点B时,点F、G、H与点B重合则点H所经过的路径长为_,点G所经过的路径长为_3(2023湖南郴州统考中考真题)已知是等边三角形,点是射线上的一个动点,延长至点,使,连接交射线于点(1)如图1,当点在线段上时,猜测线段与的数量关系并说明理由;(2)如图2,当点在线段的延长线上时,线段与的数量关系是否仍然成立?请说明理由;如图3,连接设,若,求四边形的面积4.(2021浙江中考真题)已知在中

3、,是的中点,是延长线上的一点,连结(1)如图1,若,求的长(2)过点作,交延长线于点,如图2所示若,求证:(3)如图3,若,是否存在实数,当时,?若存在,请直接写出的值;若不存在,请说明理由5(2023辽宁大连统考中考真题)综合与实践问题情境:数学活动课上,王老师给同学们每人发了一张等腰三角形纸片探究折叠的性质已知,点为上一动点,将以为对称轴翻折同学们经过思考后进行如下探究:独立思考:小明:“当点落在上时,”小红:“若点为中点,给出与的长,就可求出的长”实践探究:奋进小组的同学们经过探究后提出问题1,请你回答:问题1:在等腰中,由翻折得到(1)如图1,当点落在上时,求证:;(2)如图2,若点为

4、中点,求的长问题解决:小明经过探究发现:若将问题1中的等腰三角形换成的等腰三角形,可以将问题进一步拓展问题2:如图3,在等腰中,若,则求的长6.(2021浙江中考真题)问题:如图,在中,的平分线AE,BF分别与直线CD交于点E,F,求EF的长答案:探究:(1)把“问题”中的条件“”去掉,其余条件不变当点E与点F重合时,求AB的长;当点E与点C重合时,求EF的长(2)把“问题”中的条件“,”去掉,其余条件不变,当点C,D,E,F相邻两点间的距离相等时,求的值7(2023重庆统考中考真题)在中,点为线段上一动点,连接(1)如图1,若,求线段的长(2)如图2,以为边在上方作等边,点是的中点,连接并延

5、长,交的延长线于点 若,求证:(3)在取得最小值的条件下,以为边在右侧作等边点为所在直线上一点,将沿所在直线翻折至所在平面内得到 连接,点为的中点,连接,当取最大值时,连接,将沿所在直线翻折至所在平面内得到,请直接写出此时的值8.如图1,在矩形纸片ABCD中,AB3cm,AD5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EFAB交PQ于F,连接BF(1)求证:四边形BFEP为菱形;(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;当点Q与点C重合时(如图2),求菱形BFEP的边长;若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离9(2023四川成都

6、统考中考真题)探究式学习是新课程倡导的重要学习方式,某兴趣小组拟做以下探究在中,D是边上一点,且(n为正整数),E是边上的动点,过点D作的垂线交直线于点F【初步感知】(1)如图1,当时,兴趣小组探究得出结论:,请写出证明过程【深入探究】(2)如图2,当,且点F在线段上时,试探究线段之间的数量关系,请写出结论并证明;请通过类比、归纳、猜想,探究出线段之间数量关系的一般结论(直接写出结论,不必证明)【拓展运用】(3)如图3,连接,设的中点为M若,求点E从点A运动到点C的过程中,点M运动的路径长(用含n的代数式表示)10.(2021山东中考真题)如图,已知正方形ABCD,点E是BC边上一点,将ABE

7、沿直线AE折叠,点B落在F处,连接BF并延长,与DAF的平分线相交于点H,与AE,CD分别相交于点G,M,连接HC(1)求证:AGGH;(2)若AB3,BE1,求点D到直线BH的距离;(3)当点E在BC边上(端点除外)运动时,BHC的大小是否变化?为什么?11.(2021湖南中考真题)如图,在中,点为斜边上一动点,将沿直线折叠,使得点的对应点为,连接,(1)如图,若,证明:(2)如图,若,求的值(3)如图,若,是否存在点,使得若存在,求此时的值;若不存在,请说明理由12.如图1和图2,在ABC中,ABAC,BC8,tanC=34点K在AC边上,点M,N分别在AB,BC上,且AMCN2点P从点M

8、出发沿折线MBBN匀速移动,到达点N时停止;而点Q在AC边上随P移动,且始终保持APQB(1)当点P在BC上时,求点P与点A的最短距离;(2)若点P在MB上,且PQ将ABC的面积分成上下4:5两部分时,求MP的长;(3)设点P移动的路程为x,当0x3及3x9时,分别求点P到直线AC的距离(用含x的式子表示);(4)在点P处设计并安装一扫描器,按定角APQ扫描APQ区域(含边界),扫描器随点P从M到B再到N共用时36秒若AK=94,请直接写出点K被扫描到的总时长13.如图,点P、Q分别是等边ABC边AB、BC上的动点(端点除外),点P、点Q以相同的速度,同时从点A、点B出发(1)如图1,连接AQ

9、、CP求证:ABQCAP;(2)如图1,当点P、Q分别在AB、BC边上运动时,AQ、CP相交于点M,QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数;(3)如图2,当点P、Q在AB、BC的延长线上运动时,直线AQ、CP相交于M,QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数14.如图1,平面直角坐标系xOy中,等腰ABC的底边BC在x轴上,BC8,顶点A在y的正半轴上,OA2,一动点E从(3,0)出发,以每秒1个单位的速度沿CB向左运动,到达OB的中点停止另一动点F从点C出发,以相同的速度沿CB向左运动,到达点O停止已知点E、F同时出发,以EF为边作正方形EFGH

10、,使正方形EFGH和ABC在BC的同侧,设运动的时间为t秒(t0)(1)当点H落在AC边上时,求t的值;(2)设正方形EFGH与ABC重叠面积为S,请问是否存在t值,使得S=9136?若存在,求出t值;若不存在,请说明理由;(3)如图2,取AC的中点D,连结OD,当点E、F开始运动时,点M从点O出发,以每秒25个单位的速度沿ODDCCDDO运动,到达点O停止运动请问在点E的整个运动过程中,点M可能在正方形EFGH内(含边界)吗?如果可能,求出点M在正方形EFGH内(含边界)的时长;若不可能,请说明理由15.已知:如图,在四边形ABCD和RtEBF中,ABCD,CDAB,点C在EB上,ABCEB

11、F90,ABBE8cm,BCBF6cm,延长DC交EF于点M点P从点A出发,沿AC方向匀速运动,速度为2cm/s;同时,点Q从点M出发,沿MF方向匀速运动,速度为1cm/s过点P作GHAB于点H,交CD于点G设运动时间为t(s)(0t5)解答下列问题:(1)当t为何值时,点M在线段CQ的垂直平分线上?(2)连接PQ,作QNAF于点N,当四边形PQNH为矩形时,求t的值;(3)连接QC,QH,设四边形QCGH的面积为S(cm2),求S与t的函数关系式;(4)点P在运动过程中,是否存在某一时刻t,使点P在AFE的平分线上?若存在,求出t的值;若不存在,请说明理由16.如图,菱形ABCD的边长为1,

12、ABC60,点E是边AB上任意一点(端点除外),线段CE的垂直平分线交BD,CE分别于点F,G,AE,EF的中点分别为M,N(1)求证:AFEF;(2)求MN+NG的最小值;(3)当点E在AB上运动时,CEF的大小是否变化?为什么?17.如图1,在矩形ABCD中,AB6,BC8,动点P,Q分别从C点,A点同时以每秒1个单位长度的速度出发,且分别在边CA,AB上沿CA,AB的方向运动,当点Q运动到点B时,P,Q两点同时停止运动设点P运动的时间为t(s),连接PQ,过点P作PEPQ,PE与边BC相交于点E,连接QE(1)如图2,当t5s时,延长EP交边AD于点F求证:AFCE;(2)在(1)的条件下,试探究线段AQ,QE,CE三者之间的等量关系,并加以证明;(3)如图3,当t94s时,延长EP交边AD于点F,连接FQ,若FQ平分AFP,求AFCE的值

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 初中 > 数学 > 中考复习 > 二轮专题
版权提示 | 免责声明

1,本文(2024年中考数学二轮题型突破题型11 综合探究题 类型2 与动点有关的探究题(专题训练)(学生版).docx)为本站会员(现有分享)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|