安徽省定远重点中学2019届高三上学期期末考试 数学(理).doc

上传人(卖家):secant 文档编号:94704 上传时间:2019-02-15 格式:DOC 页数:12 大小:2MB
下载 相关 举报
安徽省定远重点中学2019届高三上学期期末考试 数学(理).doc_第1页
第1页 / 共12页
安徽省定远重点中学2019届高三上学期期末考试 数学(理).doc_第2页
第2页 / 共12页
安徽省定远重点中学2019届高三上学期期末考试 数学(理).doc_第3页
第3页 / 共12页
安徽省定远重点中学2019届高三上学期期末考试 数学(理).doc_第4页
第4页 / 共12页
安徽省定远重点中学2019届高三上学期期末考试 数学(理).doc_第5页
第5页 / 共12页
点击查看更多>>
资源描述

1、定远重点中学2019届高三上学期期末考试数学(理科)试题本试卷分第卷和第卷两部分,共150分,考试时间120分钟。请在答题卷上作答。第I卷 (选择题 共60分) 一、选择题(共12小题,每小题5分,共60分。在每小题给出的四个选项中只有一项符合题目要求。) 1.已知集合, ,则 ( )A. B. C. D. 2.复数(为虚数单位)的虚部是( )A. B. C. D. 3.当时,执行如图所示的程序框图,则输出的值为 ( )A. 9 B. 15 C. 31 D. 634.等比数列的前项和为,且成等差数列,若,则( )A. 15 B. 16 C. 18 D. 205.若,且,则( )A. B. C.

2、 D. 6.设, 分别是正方形的边, 上的点,且, ,如果(, 为实数),则的值为( )A. B. C. D. 7.某几何体的三视图如图所示,其中正视图和侧视图均为直角梯形,俯视图为两个正方形,则该几何体的表面积为( )A. B. 61 C. 62 D. 738.设不等式组表示的平面区域为,若直线上存在内的点,则实数的取值范围是( )A. B. C. D. 9.已知, 为的导函数,则的图像是( )A. B. C. D. 10.已知函数,若存在四个互不相等的实数根,则实数的取值范围为( )A. B. C. D. 11.设函数存在零点,且,则实数的取值范围是A. B. C. D. 12.已知奇函数

3、满足,当时, ,则( )A. B. C. D. 第II卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分) 13.已知正方体的棱长为,点是棱的中点,点在底面内,点在线段上,若,则长度的最小值为_.14.在平面直角坐标系中,已知圆,圆,在圆内存在一定点,过的直线被圆,圆截得的弦分别为, ,且,则定点的坐标为_.15.已知函数,若对任意的实数,都存在唯一的实数,使,则实数的最小值是_16.如图,为了测量河对岸、两点之间的距离,观察者找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、;找到一个点,从点可以观察到点、;并测量得到一些数据: , , , , , , ,则

4、、两点之间的距离为_(其中取近似值)三、解答题(共6小题 ,共70分。解答应写出文字说明,证明过程或演算步骤。) 17.(本小题满分10分)已知的内角所对的边分别为,.(1);(2)若的平分线交于点,且的面积为,求的长.18. 本小题满分12分)已知右焦点为的椭圆与直线相交于两点,且.(1)求椭圆的方程;(2)为坐标原点, 是椭圆上不同的三点,并且为的重心,试探究的面积是否为定值.若是,求出这个定值;若不是,说明理由.19. (本 题满分12分)已知函数的定义域为,值域为,且对任意,都有,. ()求的值,并证明为奇函数;()若时,且,证明为上的增函数,并解不等式.20. (本小题满分12分)已

5、知曲线上任意一点到直线的距离是它到点距离的2倍;曲线是以原点为顶点,为焦点的抛物线(1)求的方程;(2)设过点的直线与曲线相交于两点,分别以为切点引曲线的两条切线,设相交于点,连接的直线交曲线于两点,求的最小值21. (本小题满分12分)如图,在边长为的菱形中,.点,分别在边,上,点与点,不重合,.沿将翻折到的位置,使平面平面.(1)求证:平面;(2)当与平面所成的角为时,求平面与平面所成锐二面角的余弦值.22. (本小题满分12分)已知.(1)讨论的单调性;(2)若有三个不同的零点,求的取值范围.理科数学试题答案1.B2.D3.C4.A5.A6.C7.C8.A9.A10.D11.D12.B1

6、3.14.15.16.17.(1) (2) 【解析】(1)因为,所以.于是,.(2)由可得.设的面积为,.则.为的平分线,.又.在中,由余弦定理可得,.18.(1) (2) 的面积为定值【解析】(1)设, ,则 , ,即, ,即,由得,又, , 椭圆的方程为 (2)设直线方程为: ,由得, 为重心, , 点在椭圆上,故有,可得, 而,点到直线的距离(是原点到距离的3倍得到), 当直线斜率不存在时, , , ,的面积为定值19.(1) ,见解析(2) 解集为.【解析】()解:令,得.值域为,.的定义域为,的定义域为.又,为奇函数.(2),任取,时,又值域为,.为上的增函数.,.又为上的增函数,.

7、故的解集为.20.(1)曲线的方程,曲线的方程为;(2)最小值为【解析】(1)设,则曲线的方程,设曲线的方程为,则 曲线的方程为 (2)设方程为,代入曲线的方程得, 由 ,代入曲线方程得,设, (其中)设,则,故在单调递增,因此,当且仅当即等号成立,故的最小值为 21.解析:(1),.平面平面,平面平面,且平面,平面.(2)如图,以为原点,建立空间直角坐标系,连接,平面,为与平面所成的角,即,.设,为等边三角形,.设,则,由,得,即,.,.设平面、平面的法向量分别为,由,取,得.同理,得,所以平面与平面所成锐二面角的余弦值为.22.解析:(1)由已知的定乂域为,又,当时,恒成立; 当时,令得;令得.综上所述,当时,在上为增函数;当时,在上为增函数,在上为减函数.(2)由题意,则,当时,在上为增函数,不符合题意.当时,令,则.令的两根分别为且,则,当时,在上为增函数;当时,在上为减函数;当时,在上为增函数.,在上只有一个零点 1,且。,.,又当时,.在上必有一个零点. .,又当时,.在上必有一个零点.综上所述,故的取值范围为.欢迎访问“高中试卷网”:/sj.fjjy.org

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 模拟试题
版权提示 | 免责声明

1,本文(安徽省定远重点中学2019届高三上学期期末考试 数学(理).doc)为本站会员(secant)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|