2019届高考数学二轮复习第二部分专项专题二 第1讲 三角函数(教师版).docx

上传人(卖家):secant 文档编号:97633 上传时间:2019-02-26 格式:DOCX 页数:19 大小:943.92KB
下载 相关 举报
2019届高考数学二轮复习第二部分专项专题二  第1讲 三角函数(教师版).docx_第1页
第1页 / 共19页
2019届高考数学二轮复习第二部分专项专题二  第1讲 三角函数(教师版).docx_第2页
第2页 / 共19页
2019届高考数学二轮复习第二部分专项专题二  第1讲 三角函数(教师版).docx_第3页
第3页 / 共19页
2019届高考数学二轮复习第二部分专项专题二  第1讲 三角函数(教师版).docx_第4页
第4页 / 共19页
2019届高考数学二轮复习第二部分专项专题二  第1讲 三角函数(教师版).docx_第5页
第5页 / 共19页
点击查看更多>>
资源描述

1、专题二第1讲 三角函数三角函数、解三角形、平面向量与数列考向预测1三角函数的图象,主要涉及图象变换问题以及由图象确定解析式问题,主要以选择题、填空题的形式考查;2利用三角函数的性质求解三角函数的值、参数、最值、值域、单调区间等,主要以解答题的形式考查;3三角函数的化简与求值是高考的命题热点,其中同角三角函数的基本关系、诱导公式是解决计算问题的工具,三角恒等变换是利用三角恒等式(两角和与差、二倍角的正弦、余弦、正切公式)进行变换,“角”的变换是三角恒等变换的核心知识与技巧的梳理1常用三种函数的图象性质(下表中)函数ysin xycos xytan x图象递增区间递减区间奇偶性奇函数偶函数奇函数对

2、称中心对称轴xkxk周期性222三角函数的常用结论(1)yAsin(x),当k(kZ)时为奇函数;当k( )时为偶函数;对称轴方程可由xk( )求得(2)yAcos(x),当k(kZ)时为奇函数;当k(kZ)时为偶函数;对称轴方程可由xk()求得(3)yAtan(x),当k()时为奇函数3三角函数的两种常见变换(1)ysin xysin(x)yAsin(x)(A0,0)yAsin(x)(A0,0)4三角函数公式(1)同角关系:sin2cos21,(2)诱导公式:对于“,的三角函数值”与“角的三角函数值”的关系可按下面口诀记忆:奇变偶不变,符号看象限(3)两角和与差的正弦、余弦、正切公式:;(4

3、)二倍角公式:,(5)辅助角公式:asin xbcos xsin(x),其中热点题型热点一三角函数的图象【例1】(1) (2018清流一中)已知函数,(1)用“五点法”作出这个函数在一个周期内的图象;(2)函数图象经过怎样的变换可以得到的图象?(2)函数f(x)Asin(x)的部分图象如图所示,则函数f(x)的解析式为()ABCD(1)解(1)列表02002【注:列表每行1分,该行必须全对才得分;图象五点对得1分,图象趋势错扣1分】(2)把的图象向左平移个单位得到的图象,再把的图象纵坐标不变,横坐标变为原来的2倍得到的图象,最后把的图象横坐标不变,纵坐标变为原来的2倍,得到的图象(2)由(1)

4、知,根据图象平移变换,得因为ysin x的对称中心为,令2x2k,解得,由于函数yg(x)的图象关于点成中心对称,令,解得,由0可知,当k1时,取得最小值(2)解析(1)由题意知A2,2,因为当时取得最大值2,所以,所以,解得,因为|0,0)的图象求解析式时,常采用待定系数法,由图中的最高点、最低点或特殊点求A;由函数的周期确定;确定常根据“五点法”中的五个点求解,其中一般把第一个零点作为突破口,可以从图象的升降找准第一个零点的位置【训练1】(1) (2018孝感期末)已知函数,的图像在轴上的截距为1,且关于直线对称若对于任意的,存在,使得,则实数的取值范围为_(2)(2017贵阳调研)已知函

5、数f(x)Asin(x)( ,)的部分图象如图所示求函数f(x)的解析式;将函数yf(x)的图象上各点的纵坐标保持不变,横坐标缩短到原来的倍,再把所得的函数图象向左平移个单位长度,得到函数yg(x)的图象,求函数g(x)在区间上的最小值解析(1)因为的图像在轴上的截距为1,且关于直线对称,所以,又,所以,所以,所以,因为,所以,若对于任意的,存在,使得,则,所以,解得,所以实数m的取值范围为,答案为答案 (2)解设函数f(x)的最小正周期为T,由题图可知A1,即T,所以,解得2,故f(x)sin(2x)由0sin可得2k,则2k,kZ,因为|,所以,故函数f(x)的解析式为f(x)sin根据条

6、件得g(x)sin,当x时,4x,所以当x时,g(x)取得最小值,且g(x)min热点二三角函数的性质【例2】 (2018哈尔滨三中)已知函数的图象与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和(1)求解析式及的值;(2)求的单调增区间;(3)若时,函数有两个零点,求实数的取值范围解 (1)由题意知,;又图象过点,;又,;又是在轴右侧的第1个最高点,解得(2)由,得,的单调增区间为;(3)在时,函数有两个零点,有两个实数根,即函数图象有两个交点在上有两个根,结合函数图象,函数有两个零点的范围是探究提高1讨论三角函数的单调性,研究函数的周期性、奇偶性与对称性,都必须首先利用辅

7、助角公式,将函数化成一个角的一种三角函数2求函数yAsin(x)(A0,0)的单调区间,是将x作为一个整体代入正弦函数增区间(或减区间),求出的区间即为yAsin(x)的增区间(或减区间),但是当A0,0时,需先利用诱导公式变形为yAsin(x),则yAsin(x)的增区间即为原函数的减区间,减区间即为原函数的增区间【训练2】 (2017浙江卷)已知函数f(x)sin2xcos2x2sin xcos x(xR)(1)求f 的值;(2)求f(x)的最小正周期及单调递增区间解(1)f(x)sin2xcos2x2sin xcos xcos 2xsin 2x2sin,则f 2sin2(2)f(x)的最

8、小正周期为由正弦函数的性质,令2k2x2k,kZ,得kxk,kZ所以函数f(x)的单调递增区间为,kZ热点三三角函数图象与性质的综合应用【例3】 (2017西安调研)已知函数f(x)2sin xcos x2sin2x(0)的最小正周期为(1)求函数f(x)的单调递增区间(2)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到函数yg(x)的图象,若yg(x)在0,b(b0)上至少含有10个零点,求b的最小值解(1)f(x)2sin xcosx(2sin2x1)sin 2xcos 2x2sin由最小正周期为,得1,所以f(x)2sin,由2k2x2k,整理得kxkx,所以函数f(x)的

9、单调递增区间是,(2)将函数f(x)的图象向左平移个单位,再向上平移1个单位,得到y2sin 2x1的图象;所以g(x)2sin 2x1令g(x)0,得xk或xk( ),所以在0,上恰好有两个零点,若yg(x)在0,b上有10个零点,则b不小于第10个零点的横坐标即可所以b的最小值为4探究提高1研究三角函数的图象与性质,关键是将函数化为yAsin(x)B(或yAcos(x)B)的形式,利用正余弦函数与复合函数的性质求解2函数yAsin(x)(或yAcos(x)的最小正周期T应特别注意y|Asin(x)|的最小正周期为T【训练3】函数的性质通常指函数的定义域、值域、周期性、单调性、奇偶性、对称性

10、等,请选择适当的探究顺序,研究函数的性质,并在此基础上填写下表,作出在区间上的图象性质理由结论得分定义域值域奇偶性周期性单调性对称性作图解1-sinx0且1+sinx0,在R上恒成立,函数的定义域为R;,由|cosx|0,1,f2(x)2,4,可得函数的值域为2,2;,函数的最小正周期为,当时,在上为减函数,当时,在上为增函数,在上递增,在上递减,且,在其定义域上为偶函数,结合周期为得到图象关于直线对称,因此,可得如下表格:性质理由结论得分定义域定义域值域值域奇偶性偶函数周期性周期单调性在上递增,在上递减对称性f(-x)=f(x),关于直线x=k2对称作图热点四三角恒等变换及应用【例4】(1)

11、(2015重庆卷)若tan 2tan ,则()A1B2C3D4解析3答案C探究提高1三角恒等变换的基本思路:找差异,化同角(名),化简求值2解决条件求值问题的三个关注点(1)分析已知角和未知角之间的关系,正确地用已知角来表示未知角(2)正确地运用有关公式将所求角的三角函数值用已知角的三角函数值来表示(3)解三角函数中给值求角的问题时,要根据已知求这个角的某种三角函数值,然后结合角的取值范围,求出角的大小【训练4】 (1) (2018泰安一中)平面直角坐标系中,点在单位圆上,设,若,且,则的值为_(2)(2017石家庄质检)若cos(2),sin(2),0,则的值为_解析(1)点在单位圆O上,且,cosx0,siny0,又,且,则,x0coscos(+6)-6cos(+6)cos6+sin(+6)sin故答案为(2)因为cos(2)且2,所以sin(2)因为sin(2)且2,所以cos(2)所以cos()cos(2)(2)cos(2)cos(2)sin(2)sin(2)因为

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 高考专区 > 二轮专题
版权提示 | 免责声明

1,本文(2019届高考数学二轮复习第二部分专项专题二 第1讲 三角函数(教师版).docx)为本站会员(secant)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|