. 第二讲第二讲 因式分解因式分解 因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形在分式运算、 解方程及各种恒等变形中起着重要的作用是一种重要的基本技能 因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平 方公式)外,还有公式法(立方和、立方差公式)
因式分解必上Tag内容描述:
1、 在第一讲里,我们已经学习了乘法公式中的立方和、立方差公式: 2233 ()()ab aabbab? (立方和公式) 2233 ()()ab aabbab? (立方差公式) 由于因式分解与整式乘法正好是互为逆变形,所以把整式乘法公式反过来写,就得到: 3322 ()()abab aabb? 3322 ()()abab aabb? 这就是说, 两个数的立方和(差), 等于这两个数的和(差)乘以它们的平方和与它们积的差(和) 运用这两个公式,可以把形式是立方和或立方差的多项式进行因式分解 【例【例 1】用立方和或立方差公式分解下列各多项式: (1) 3 8x? (2) 3 0.12527b? 分析:分析: (1)中, 3 82?,(2)中 333 0.1250.5 ,27(3 )bb? 解:解:(1) 3332 82(2)(42)xxxxx? (2) 33322 0.125270.5(3 )(0.53 )0.50.5 3(3 ) bbbbb? 2 (0.53 )(0.25 1.59)bbb? 说明:说明: 。
2、第二讲第二讲 因式分解因式分解 因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形在分式运算 解方程及各种恒等变形中起着重要的作用是一种重要的基本技能 因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法平方差公式和。
3、第二讲第二讲 因式分解因式分解 因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形在分式运算 解方程及各种恒等变形中起着重要的作用是一种重要的基本技能 因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法平方差公式和。
4、第二讲 因式分解因式分解是代数式的一种重要的恒等变形,它与整式乘法是相反方向的变形在分式运算解方程及各种恒等变形中起着重要的作用是一种重要的基本技能因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法平方差公式和完全平方公式外,还有。