(新人教版高中数学公开课精品教案)方程的根与函数的零点 教学设计(青海).doc

上传人(卖家):四川天地人教育 文档编号:1652744 上传时间:2021-08-13 格式:DOC 页数:6 大小:87KB
下载 相关 举报
(新人教版高中数学公开课精品教案)方程的根与函数的零点 教学设计(青海).doc_第1页
第1页 / 共6页
(新人教版高中数学公开课精品教案)方程的根与函数的零点 教学设计(青海).doc_第2页
第2页 / 共6页
(新人教版高中数学公开课精品教案)方程的根与函数的零点 教学设计(青海).doc_第3页
第3页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、新人教版高中数学优质公开课精品教案及点评资料 第三章函数的应用 3.1函数与方程 3.1.1方程的根与函数的零点 单位:青海昆仑中学姓名:周 XX 一一教学内容分析教学内容分析 本节内容是高中数学人教版必修一,第三章函数的应用,第一节函数与方程第一课 时方程的根与函数的零点; 课本选取探究具体的一元二次方程的根与其对应的二次函数 的图象与 x 轴的交点的横坐标之间的关系作为本节内容的入口,其意图是让学生从熟悉 的环境中发现新知识,使新知识与原有知识形成联系.本节设计特点是由特殊到一般的 化归转化思想,由易到难,这符合学生的认知规律;本节体现的数学思想是: “数形结 合”思想和“转化”思想.本节

2、充分体现了函数图象和性质的应用.因此,把握课本要从 三个方面入手:新旧知识的联系,学生认知规律,数学思想方法. 二、教学目标二、教学目标 3、能利用函数图象和性质判断某些函数的零点个数,及所在区间 4.经历“类比归纳应用”的过程,感悟由具体到抽象的研究方法,培养归纳概 括能力体会从特殊到一般的转化的数学思想。 三、学情分析三、学情分析 通过前面的学习,学生已经了解一些基本初等函数的模型,具备一定的看图识图能 力,这为本节课利用函数图象,判断方程根的存在性提供了一定的知识基础其次,学 生对于方程已经有了一定的认知基础,对方程的根并不陌生,这样就使得方程与函数联 系的过度学生容易掌握,但学生对于数

3、形结合的数学思想仍不能胜任,故本节课关键在 于通过图像去突破重难点,学生会表现出不适。而本节的零点存在定理只为零点的存在 提供充分非必要条件,所以定理的逆命题、否命题都不成立,在函数连续性、简单逻辑 1、了解函数零点的概念:能够结合具体方程(如二次方程) ,说明方程的根、函数 的零点、函数图象与x轴的交点三者的关系; 2、理解函数零点存在性定理:了解图象连续不断的意义及作用;知道定理只是函 数存在零点的一个充分条件;了解函数零点可能不止一个; 新人教版高中数学优质公开课精品教案及点评资料 用语未学习的情况下,学生对定理的理解常常不够深入这就要求教师引导学生体验各 种成立与不成立的情况,从不同的

4、角度审视定理的条件与适用范围 四、教学策略选择与设计四、教学策略选择与设计 本节课在概念的形成和深化、 定理的概括和应用方面, 都给予自主探究、 辨析实践、 动手画图及交流讨论的机会,只有充分激活了学生的思维,这节课的各环节才能顺利推 进,内容才会丰富充实,方法才会异彩纷呈所以这节课总的设计理念是以学生为主概 念与定理的建立是一个感知、探究的过程,不仅关注知识的掌握,也关注学生的学习过 程,把体验、尝试、发现的机会交给学生,紧扣教材,注重思维、注重过程 五、教学重点及难点五、教学重点及难点 教学难点:教学难点: 对零点存在性定理的准确理解 六、教学过程六、教学过程 (一)导入新课(一)导入新课

5、: 求解下列方程 032 2 xx012 2 xx032 2 xx 设计意图:设计意图:通过具体的一元二次方程求解回忆旧知为新知铺垫。 (二)新知探究: (1)回忆旧知铺垫新回忆旧知铺垫新课 问题 1:二次函数与其所对应方程之间有什么关系? 判别式000 方程 ax 2+bx+c=0 (a0)的根 两个不相 等的实数根x1、 x2 有两个相 等的 实数根x1= x2 没有实数 根 函数 y=ax 2+bx+c (a0)的图象 O x y x1x2 O y xx1 O x y 函数的图两个交点:一个交点:无交点 教学重点:教学重点:了解函数零点概念,掌握函数零点存在性定理 新人教版高中数学优质公

6、开课精品教案及点评资料 y y x y y x 象与x轴的交点(x1,0), (x2,0) (x1,0) 设计意图设计意图:引导学生对初中所学的二次方程进行回忆,同时也想要说明方程的根除 了韦达定理和求根公式和函数的图像存在关系,为后面的零点进行铺垫通过回顾二次函 数图象与x轴的交点和相应方程的根的关系,为一般函数及相应方程关系作准备。 (2 2)辨析讨论)辨析讨论,深化概念深化概念 问题 2:由二次函数与其所对应方程之间存在的关系你能否类比得到函数和方程之 间的关系吗? 设计意图:设计意图:培养学生识图和归纳总结的能力 问题 3:你能将你得到的特殊结论推广到一般的形式的函数吗?并将你所得的结

7、论 总结出来吗? 设计意图:设计意图:让学生参与概念的生成,并将学生的主体地位显现 练习:函数f(x)=x(x 216)的零点为 ( D ) A.(0,0)(4,0)B0,4C(4,0),(0,0),(4,0)D4,0,4 设计意图设计意图: : 及时矫正“零点是交点”这一误解说明:函数零点不是一个点,而是 具体的自变量的取值 练习练习:求下列函数的零点: 22 (1)( )34(2)( )lg(44) f xxxf xxx x xf3)(3)( 1 1 )(4 x xf)( 设计意图设计意图: : 使学生熟悉零点的求法(即求相应方程的实数根) 同时为零点存在定 理做铺垫。 (3)(3)实例探

8、究实例探究,归纳定理归纳定理 问题 4:对于如图所示的函数图象什么时候会存在零点呢? 新人教版高中数学优质公开课精品教案及点评资料 a b c x y Od 设计意图设计意图: 通过将零点存在定理分割让学生理解零点为什么要定义在区间上同时也 让学生了解图象在区间上也必须连续,也为寻找特殊二次函数在区间有零点提供依据, 同时为零点存在定理的形成进行铺垫。 问题 5:在怎样的条件下,函数yf(x)在区间a,b上一定有零点? 探究: (1)观察二次函数f(x)x 22x3 的图象: 在区间-2,1上有零点_; f(-2)=_,f(1)=_,f(-2)f(1)_0 ( “”或“” ) 在区间(2,4)

9、上有零点_;f(2)f(4)_0 ( “”或“” ) (2)观察函数的图象: 在区间(a,b)上_(有/无)零点;f(a)f(b) _ 0( “”或“” ) 在区间(b,c)上_(有/无)零点;f(b)f(c) _ 0( “”或“” ) 在区间(c,d)上_(有/无)零点;f(c)f(d) _ 0( “”或“” ) 设计意图设计意图:通过归纳总结得出特殊到一般数学思想得到零点存在性定理从而强调 零点存在的条件为后面概念的辨析做好铺垫。 问题 6:通过观察图象对零点的存在有了一定的认识,那么对于下面的图象是否有 零点呢? x 设计意图设计意图:让学生通过自己动手去填补图象去归纳总结零点存在的条件

10、,达到探究 的目的。 问题 7:如果在闭区间a,b上函数 y=f(x)端点函数值 f(a).f(b)0 是否一定有零 点? 设计意图设计意图:对存在零点的条件进行辨析,通过学生自己探究培养归纳的能力。同时 新人教版高中数学优质公开课精品教案及点评资料 渗透数学中的数形结合的数学思想与此同时教师可以起到主导作用 (三)正反例证(三)正反例证,熟悉定理熟悉定理定理辨析与灵活运用 例例 1 1 判断下列结论是否正确,若不正确,请使用函数图象举出反例: (1)已知函数y=f(x)在区间a,b上连续,且f(a)f(b)0,则f(x)在区间(a, b)内有且仅有一个零点 (2)已知函数y=f(x)在区间a

11、,b上连续,且f(a)f(b)0,则f(x)在区间(a, b)内没有零点 (3)已知函数y=f(x)在区间a,b满足f(a)f(b)0,则f(x)在区间(a,b)内存 在零点 设计意图设计意图:让学生归纳并强调定理不能确零点的个数;定理中的“连续不断”是必 不可少的条件;不满足定理条件时依然可能有零点通过对定理中条件的改变,将几种容 易产生的误解正面给出,在第一时间加以纠正,从而促进对定理本身的准确理解也对零 点存在定理只是具有零点的充分不必要条件,反面和缺少条件定理都不成立。 例例 2 2:求函数f(x)lnx2x6 的零点的个数,并确定零点所在的区间n,n+1(n Z Z) 设计意图设计意

12、图:通过例题分析,能根据零点存在性定理,使用多种方法确定零点所在的 区间,并且结合函数性质,判断零点个数 (四)课时小结:总结整理(四)课时小结:总结整理,提高认识提高认识 1.一个关系:函数零点与方程根的关系 函数方程 零点根 数值 存在性 个数 2.三种思想:函数方程思想;数形结合思想,特殊到一般的化归转化思想 3.三种题型:求函数零点、判断零点个数、求零点所在区间 设计意图设计意图:针对于本节课的教学和本节课需要让学生掌握的知识为依据,同时也可 以让学生自行归纳,教师总结。 (五)布置作业,独立探究(五)布置作业,独立探究 1函数f(x)(x4)(x4)(x2)在区间-5,6上是否存在零

13、点?若存在,有几 个? 新人教版高中数学优质公开课精品教案及点评资料 2利用函数图象判断下列方程有几个根: (1)2x(x2)3;(2)e x144x 3结合上课给出的图象,写出并证明下列函数零点所在的大致区间: (1)f(x)=2xln(x-2)-3;(2)f(x)3(x2)(x3)(x4)x 思考题:方程 2 -x =x在区间_内有解,如何求出这个解的近似值?请预习下一 节 设计意图设计意图:复习巩固本节知识点同时为下一节“用二分法求方程的近似解”的学习 做准备。 (六)板书设计 方程的根与函数的零点 1、零点概念:练习: 2、方程的根与函数零点 的关系 3、函数零点存在性定理 的条件 例 2: 例 1 反例: 设计意图设计意图:可以让学生对于本节的知识点衔接更准确,也好让学生清晰了解整节课 的脉络,方便学生去掌握本节学习中还存在哪些不足,可以在课下去寻找解决办法。 (七)教学反思: 通过本节课的讲授将知识点都进行了分析,但是在讲课的过程中存在口误将 端点处函数值的乘积说成了断电乘积的函数值,在教学中要注意自己的教学口语表达能 力,不断提升自己。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 高中 > 数学 > 其他
版权提示 | 免责声明

1,本文((新人教版高中数学公开课精品教案)方程的根与函数的零点 教学设计(青海).doc)为本站会员(四川天地人教育)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|