1、1、教材分析(1)知识结构(2)重点、难点分析重点:切线长定理及其应用因切线长定理再次体现了圆的轴对称性,它为证明线段相等、角相等、弧相等、垂直关系等提供了理论依据,它属于工具知识,经常应用,因此它是本节的重点难点:与切线长定理有关的证明和计算问题如 120 页练习题中第 3 题,它不仅应用切线长定理,还用到解方程组的知识,是代数与几何的综合题,学生往往不能很好的把知识连贯起来2、教法建议本节内容需要一个课时(1)在教学中,组织学生自主观察、猜想、证明,并深刻剖析切线长定理的基本图形;对重要的结论及时总结;(2)在教学中,以“观察?猜想?证明?剖析?应用?归纳”为主线,开展在教师组织下,以学生
2、为主体,活动式教学教学目标教学目标1理解切线长的概念,掌握切线长定理;2通过对例题的分析,培养学生分析总结问题的习惯,提高学生综合运用知识解题的能力,培养数形结合的思想3 3通过对定理的猜想和证明,激发学生的通过对定理的猜想和证明,激发学生的学习学习兴趣,调动学生兴趣,调动学生的的学习学习积极性,树立科学的积极性,树立科学的学习学习态度态度教学重点教学重点: :切线长定理是切线长定理是教学重点教学重点教学难点教学难点: :切线长定理的灵活运用是切线长定理的灵活运用是教学难点教学难点教学过程教学过程设计设计: :(一)观察、猜想、证明,形成定理1、切线长的概念如图,P 是O 外一点,PA,PB
3、是O 的两条切线,我们把线段 PA,PB 叫做点P 到O 的切线长引导学生理解:切线和切线长是两个不同的概念,切线是直线,不能度量;切线长是线段的长,这条线段的两个端点分别是圆外一点和切点,可以度量.2、观察利用电脑变动点 P 的位置,观察图形的特征和各量之间的关系3、猜想引导学生直观判断,猜想图中 PA 是否等于 PB PAPB4、证明猜想,形成定理猜想是否正确。需要证明组织学生分析证明方法关键是作出辅助线 OA,OB,要证明 PAPB想一想:根据图形,你还可以得到什么结论?OPAOPB(如图)等切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角5、
4、归纳:把前面所学的切线的 5 条性质与切线长定理一起归纳切线的性质6、切线长定理的基本图形研究如图,PA,PB 是O 的两条切线,A,B 为切点直线 OP 交O 于点 D,E,交 AP 于 C(1)写出图中所有的垂直关系;(2)写出图中所有的全等三角形;(3)写出图中所有的相似三角形;(4)写出图中所有的等腰三角形说明:说明:对基本图形的深刻研究和认识是在对基本图形的深刻研究和认识是在学习学习几何几何中关键,它是灵活应用知识的基础中关键,它是灵活应用知识的基础(二)应用、归纳、反思例 1、已知:如图,P 为O 外一点,PA,PB 为O 的切线,A 和 B 是切点,BC 是直径求证:ACOP分析
5、:从条件想,由 P 是O 外一点,PA、PB 为O 的切线,A,B 是切点可得PAPB,APOBPO,又由条件 BC 是直径,可得 OBOC,由此联想到与直径有关的定理“垂径定理”和“直径所对的圆周角是直角”等于是想到可能作辅助线AB.从结论想,要证 ACOP,如果连结 AB 交 OP 于 O,转化为证 CAAB,OPAB,或从 OD 为ABC 的中位线来考虑也可考虑通过平行线的判定定理来证,可获得多种证法证法一如图连结 ABPA,PB 分别切O 于 A,BPAPBAPOBPO OP AB又BC 为O 直径ACABACOP (学生板书)证法二连结 AB,交 OP 于 DPA,PB 分别切O 于
6、 A、BPAPBAPOBPOADBD又BO=DOOD 是ABC 的中位线ACOP证法三连结 AB,设 OP 与 AB 弧交于点 EPA,PB 分别切O 于 A、BPAPB OP AB=CPOBACOP反思:反思:教师引导学生比较以上证法,激发学生的教师引导学生比较以上证法,激发学生的学习学习兴趣,培养学生灵活应用知识的能力兴趣,培养学生灵活应用知识的能力例例 2 2、圆的外圆的外切四边形的两组对边的和相等切四边形的两组对边的和相等(分析和解题略)反思:(1)例 3 事实上是圆外切四边形的一个重要性质,请学生记住结论(2)圆内接四边形的性质:对角互补P120 练习:练习 1填空如图,已知O 的半
7、径为 3 厘米,PO6 厘米,PA,PB 分别切O 于 A,B,则 PA_,APB_练习 2已知:在ABC 中,BC14 厘米,AC9 厘米,AB13 厘米,它的内切圆分别和 BC,AC,AB 切于点 D,E,F,求 AF,AD 和 CE 的长分析:设各切线长 AF,BD 和 CE 分别为 x 厘米,y 厘米,z 厘米后列出关于 x , y,z 的方程组,解方程组便可求出结果(解略)反思:解这个题时,除了要用三角形内切圆的概念和切线长定理之外,还要用到解方程组的知识,是一道综合性较强的计算题通过对本题的研究培养学生的综合应用知识的能力(三)小结1、提出问题学生归纳(1 1)这节课)这节课学习学
8、习的具体内容;的具体内容;(2 2)学习学习用的用的数学数学思想方法;思想方法;(3)应注意哪些概念之间的区别?2、归纳基本图形的结论3 3、学习学习了用代数方法解决几何问题的思想方法了用代数方法解决几何问题的思想方法(四)作业教材 P131 习题 74A 组 1(1),2,3,4B 组 1 题探究活动探究活动图中找错你能找出(图 1)与(图 2)的错误所在吗?在图 2 中,P1A 为O1和O3的切线、P1B 为O1和O2的切线、P2C 为O2和O3的切线提示:在图 1 中,连结 PC、PD,则 PC、PD 都是圆的直径,从圆上一点只能作一条直径,所以此图是一张错图,点 O 应在圆上在图 2 中,设 P1A=P1B=a,P2B=P2C=b,P3AP3Cc,则有a= P1A= P1P3+P3A=P1P3+ cc= P3C= P2P3+P3A=P2P3+ ba= P1B= P1P2+P2B=P1P2+ b将代人式得a = P1P3+(P2P3+b)= P1P3+P2P3+ b,a-b= P1P3+P2P3由得 a-b= P1P2得P1P2= P2P3+ P1P3P1、P2、P3应重合,故图 2 是错误的