1、试卷主标题试卷主标题姓名:_ 班级:_考号:_一、选择题(共一、选择题(共 1010 题)题)1、 在实数, 0 ,中,最小的数是( )A B 0 C D 2、 如图所示的六角螺栓,其俯视图是( )A B C D 3、 如图,某研究性学习小组为测量学校A与河对岸工厂B之间的距离,在学校附近选一点C,利用测量仪器测得据此,可求得学校与工厂之间的距离等于( )A B C D 4、 下列运算正确的是( )A B C D 5、 某校为推荐一项作品参加 “ 科技创新 ” 比赛,对甲、乙、丙、丁四项候选作品进行量化评分,具体成绩(百分制)如表:项目作品甲乙丙丁创新性90959090实用性90909585如
2、果按照创新性占 60% ,实用性占 40% 计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()A 甲 B 乙 C 丙 D 丁6、 某市 2018 年底森林覆盖率为 63% 为贯彻落实 “ 绿水青山就是金山银山 ” 的发展理念,该市大力开展植树造林活动, 2020 年底森林覆盖率达到 68% ,如果这两年森林覆盖率的年平均增长率为x,那么,符合题意的方程是( )A B C D 7、 如图,点F在正五边形的内部,为等边三角形,则等于( )A B C D 8、 如图,一次函数的图象过点,则不等式的解集是( )A B C D 9、 如图,为的直径,点P在的延长线上,与相切,切点分别为C,D若,则
3、等于( )A B C D 10、 二次函数的图象过四个点,下列说法一定正确的是( )A 若,则B 若,则C 若,则D 若,则二、解答题(共二、解答题(共 9 9 题)题)1、 计算:2、 如图,在中,D是边上的点,垂足分别为E,F,且求证:3、 解不等式组:4、 某公司经营某种农产品,零售一箱该农产品的利润是 70 元,批发一箱该农产品的利润是 40 元( 1 )已知该公司某月卖出 100 箱这种农产品共获利润 4600 元,问:该公司当月零售、批发这种农产品的箱数分别是多少?( 2 ) 经营性质规定, 该公司零售的数量不能多于总数量的 30% 现该公司要经营 1000 箱这种农产品,问:应如
4、何规划零售和批发的数量,才能使总利润最大?最大总利润是多少?5、 如图,在中,线段是由线段平移得到的,点F在边上,是以为斜边的等腰直角三角形,且点D恰好在的延长线上( 1 )求证:;( 2 )求证:6、 如图,已知线段,垂足为a( 1 )求作四边形,使得点B,D分别在射线上,且,;(要求:尺规作图,不写作法,保留作图痕迹)( 2 )设P,Q分别为( 1 )中四边形的边的中点,求证:直线相交于同一点7、 “ 田忌赛马 ” 的故事闪烁着我国古代先贤的智慧光芒该故事的大意是:齐王有上、中、下三匹马,田忌也有上、中、下三匹马,且这六匹马在比赛中的胜负可用不等式表示如下:(注:表示A马与B马比赛,A马获
5、胜)一天,齐王找田忌赛马,约定:每匹马都出场比赛一局,共赛三局,胜两局者获得整场比赛的胜利 面对劣势, 田忌事先了解到齐王三局比赛的 “ 出马 ” 顺序为上马、 中马、下马,并采用孙膑的策略:分别用下马、上马、中马与齐王的上马、中马、下马比赛,即借助对阵()获得了整场比赛的胜利,创造了以弱胜强的经典案例假设齐王事先不打探田忌的 “ 出马 ” 情况,试回答以下问题:( 1 )如果田忌事先只打探到齐王首局将出 “ 上马 ” ,他首局应出哪种马才可能获得整场比赛的胜利?并求其获胜的概率;( 2 )如果田忌事先无法打探到齐王各局的 “ 出马 ” 情况,他是否必败无疑?若是,请说明理由;若不是,请列出田
6、忌获得整场比赛胜利的所有对阵情况,并求其获胜的概率8、 如图,在正方形中,E,F为边上的两个三等分点,点A关于的对称点为,的延长线交于点G( 1 )求证:;( 2 )求的大小;( 3 )求证:9、 已知抛物线与x轴只有一个公共点( 1 )若抛物线过点,求的最小值;( 2 )已知点中恰有两点在抛物线上 求抛物线的解析式; 设直线l:与抛物线交于M,N两点,点A在直线上,且,过点A且与x轴垂直的直线分别交抛物线和于点B,C求证:与的面积相等三、填空题(共三、填空题(共 6 6 题)题)1、 若反比例函数的图象过点,则k的值等于 _ 2、 写出一个无理数x,使得,则x可以是 _ (只要写出一个满足条
7、件的x即可)3、 某校共有 1000 名学生为了解学生的中长跑成绩分布情况,随机抽取 100 名学生的中长跑成绩,画出条形统计图,如图根据所学的统计知识可估计该校中长跑成绩优秀的学生人数是 _ 4、 如图,是的角平分线若,则点D到的距离是_ 5、 已知非零实数x,y满足,则的值等于 _ 6、 如图,在矩形中,点E,F分别是边上的动点,点E不与A,B重合,且,G是五边形内满足且的点现给出以下结论:与一定互补; 点G到边的距离一定相等; 点G到边的距离可能相等; 点G到边的距离的最大值为其中正确的是 _ (写出所有正确结论的序号)=参考答案参考答案=一、选择题一、选择题1、 A【分析】根据正数大于
8、 0 , 0 大于负数,两个负数,绝对值大的反而小【详解】解:在实数, 0 ,中,为正数大于 0 ,为负数小于 0 ,最小的数是:故选: A 【点睛】本题考查了实数比较大小,解题的关键是:根据正数大于 0 , 0 大于负数,两个负数,绝对值大的反而小,可以直接判断出来2、 A【分析】根据从上面看到的图形即可得到答案【详解】从上面看是一个正六边形,中间是一个圆,故选: A 【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图看得见部分的轮廓线要画成实线,看不见部分的轮廓线要画成虚线3、 D【分析】解直角三角形,已知一条直角边和一个锐角,求斜边的长【详解】,故选 D 【点睛】本题考查解
9、直角三角形应用,掌握特殊锐角三角函数的值是解题关键4、 D【分析】根据不同的运算法则或公式逐项加以计算,即可选出正确答案【详解】解: A :,故 A 错误;B :,故 B 错误;C :,故 C 错误;D :故选: D【点睛】本题考查了整式的加减法法则、乘法公式、同底数幂的除法法则、积的乘方、幂的乘方等知识点,熟知上述各种不同的运算法则或公式,是解题的关键5、 B【分析】利用加权平均数计算总成绩 , 比较判断即可【详解】根据题意 , 得 :甲: 9060%+9040%=90 ;乙: 9560%+9040%=93 ;丙: 9060%+9540%=92 ;丁: 9060%+8540%=88 ;故选B
10、【点睛】本题考查了加权平均数的计算,熟练掌握加权平均数的计算方法是解题的关键6、 B【分析】设年平均增长率为x,根据 2020 年底森林覆盖率 2018 年底森林覆盖率乘,据此即可列方程求解【详解】解:设年平均增长率为x,由题意得:,故选:B【点睛】此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,列出方程即可7、 C【分析】根据多边形内角和公式可求出 ABC的度数,根据正五边形的性质可得AB=BC,根据等边三角形的性质可得 ABF=AFB=60 ,AB=BF,可得BF=BC,根据角的和差关系可得出 FBC的度数,根据等腰三角形的性质可求出 BFC的度数,根据角的和差关系
11、即可得答案【详解】是正五边形,ABC=108 ,AB=BC,为等边三角形,ABF=AFB=60 ,AB=BF,BF=BC, FBC=ABC-ABF=48 ,BFC=66 ,=AFB+BFC=126 ,故选: C 【点睛】本题考查多边形内角和、等腰三角形的性质、等边三角形的性质,熟练掌握多边形内角和公式是解题关键8、 C【分析】先平移该一次函数图像,得到一次函数的图像,再由图像即可以判断出的解集【详解】解:如图所示,将直线向右平移 1 个单位得到,该图像经过原点,由图像可知,在y轴右侧,直线位于x轴上方,即y0 ,因此,当x0 时,故选: C 【点睛】本题综合考查了函数图像的平移和利用一次函数图
12、像求对应一元一次不等式的解集等,解决本题的关键是牢记一次函数的图像与一元一次不等式之间的关系,能从图像中得到对应部分的解集,本题蕴含了数形结合的思想方法等9、 D【分析】连接OC,CP,DP是 O的切线, 根据定理可知 OCP 90 ,CAP PAD,利用三角形的一个外角等于与其不相邻的两个内角的和可求 CAD=COP,在 RtOCP中求出即可【详解】解:连接OC,CP,DP是 O的切线,则 OCP 90 , CAP PAD,CAD=2CAP,OA=OCOAC ACO,COP 2CAOCOP CADOC=3在 RtCOP中,OC=3 ,PC=4OP=5 =故选:D【点睛】本题利用了切线的性质,
13、锐角三角函数,三角形的外角与内角的关系求解10、 C【分析】求出抛物线的对称轴,根据抛物线的开口方向和增减性,根据横坐标的值,可判断出各点纵坐标值的大小关系,从而可以求解【详解】解:二次函数的对称轴为:,且开口向上,距离对称轴越近,函数值越小,A ,若,则不一定成立,故选项错误,不符合题意;B, 若,则不一定成立,故选项错误,不符合题意;C ,若,所以,则一定成立,故选项正确,符合题意;D ,若,则不一定成立,故选项错误,不符合题意;故选: C 【点睛】本题考查了二次函数的图象与性质及不等式,解题的关键是:根据二次函数的对称轴及开口方向,确定各点纵坐标值的大小关系,再进行分论讨论判断即可二、解
14、答题二、解答题1、【分析】先化简二次根式,绝对值,负整式指数幂,然后计算即可得答案【详解】【点睛】本小题考查二次根式的化简、绝对值的意义、负指数幂等基础知识,熟练掌握运算法则是解题关键2、 见解析【分析】由得出,由SAS证明,得出对应角相等即可【详解】证明: ,在和中,【点睛】本小题考查垂线的性质、全等三角形的判定与性质、等基础知识,考查推理能力、空间观念与几何直观3、【分析】分别求出不等式组中各不等式的解集,再取公共部分即可【详解】解:解不等式,解得 :解不等式,解得:所以原不等式组的解集是:【点睛】本题考查了解一元一次不等式组,解题的关键是:准确解出各个不等式的解集,再取公共部分即可4、
15、( 1 )该公司当月零售农产品 20 箱,批发农产品 80 箱;( 2 )该公司应零售农产品 300 箱、批发农产品 700 箱才能使总利润最大,最大总利润是 49000 元【分析】( 1 )设该公司当月零售农产品x箱,批发农产品y箱,利用卖出 100 箱这种农产品共获利润 4600 元列方程组,然后解方程组即可;( 2 )设该公司零售农产品m箱,获得总利润w元,利用利润的意义得到, 再根据该公司零售的数量不能多于总数量的 30% 可确定m的范围,然后根据一次函数的性质解决问题【详解】解:( 1 )设该公司当月零售农产品x箱,批发农产品y箱依题意,得解得所以该公司当月零售农产品 20 箱,批发
16、农产品 80 箱( 2 ) 设该公司零售农产品m箱, 获得总利润w元 则批发农产品的数量为箱, 该公司零售的数量不能多于总数量的 30%依题意,得因为,所以w随着m的增大而增大,所以时,取得最大值 49000 元,此时所以该公司应零售农产品 300 箱、批发农产品 700 箱才能使总利润最大,最大总利润是49000 元【点睛】本题考查了一次函数的应用:建立一次函数模型,利用一次函数的性质和自变量的取值范围解决最值问题;也考查了二元一次方程组5、 ( 1 )见解析;( 2 )见解析【分析】( 1 )通过两角和等于,然后通过等量代换即可证明;( 2 )通过平移的性质,证明三角形全等,得到对应边相等
17、,通过等量代换即可证明【详解】证明:( 1 )在等腰直角三角形中,( 2 )连接由平移的性质得,是等腰直角三角形,由( 1 )得, 【点睛】本小题考查平移的性质、直角三角形和等腰三角形的性质、全等三角形的判定和性质,解题的关键是:正确添加辅助线、熟练掌握平移的性质和全等三角形的判定与性质6、 ( 1 )作图见解析;( 2 )证明见解析【分析】( 1 )根据,点B在射线上,过点A作;根据等边三角形性质,得,分别过点A、B,为半径画圆弧,交点即为点C;再根据等边三角形的性质作CD,即可得到答案;( 2 )设直线与相交于点S、直线与相交于点,根据平行线和相似三角形的性质,得,从而得,即可完成证明【详
18、解】( 1 )作图如下:四边形是所求作的四边形;( 2 )设直线与相交于点S,设直线与相交于点,同理P,Q分别为的中点, 点S与重合,即三条直线相交于同一点【点睛】本题考查了尺规作图、等边三角形、直角三角形、平行线、相似三角形等基础知识,解题的关键是熟练掌握推理能力、空间观念、化归与转化思想,从而完成求解7、 ( 1 )田忌首局应出 “ 下马 ” 才可能在整场比赛中获胜,;( 2 )不是,田忌获胜的所有对阵是,【分析】( 1 )通过理解题意分析得出结论,通过列举法求出获胜的概率;( 2 )通过列举齐王的出马顺序和田忌获胜的对阵,求出概率【详解】( 1 )田忌首局应出 “ 下马 ” 才可能在整场
19、比赛中获胜此时,比赛的所有可能对阵为:,共四种其中田忌获胜的对阵有,共两种,故此时田忌获胜的概率为( 2 )不是齐王的出马顺序为时,田忌获胜的对阵是;齐王的出马顺序为时,田忌获胜的对阵是;齐王的出马顺序为时,田忌获胜的对阵是;齐王的出马顺序为时,田忌获胜的对阵是;齐王的出马顺序为时,田忌获胜的对阵是;齐王的出马顺序为时,田忌获胜的对阵是综上所述,田忌获胜的所有对阵是,齐王的出马顺序为时,比赛的所有可能对阵是,共 6 种,同理,齐王的其他各种出马顺序,也都分别有相应的 6 种可能对阵,所以,此时田忌获胜的概率【点睛】本小题考查简单随机事件的概率等基础知识,考查推理能力、应用意识,考查统计与概率思
20、想;通过列举所有对阵情况,求得概率是解题的关键8、 ( 1 )见解析;( 2 ) 45 ;( 3 )见解析【分析】( 1 )设直线与相交于点T,证明是的中位线即可;( 2 )连接,取的中点O,连接,证明点,F,B,G四点共圆即可;( 3 )设,则,设,则,根据勾股定理找到 k 与 a 的关系,根据列比例求解即可【详解】解:( 1 )设直线与相交于点T, 点A与关于对称,垂直平分,即E,F为边上的两个三等分点,是的中位线,即( 2 )连接, 四边形是正方形, , ,又,是等腰直角三角形,取的中点O,连接,在和中, 点,F,B,G都在以为直径的上,( 3 )设,则由( 2 )得,即, 设,则,在中
21、,由勾股定理,得,在中,由勾股定理,得又 ,由( 2 )知,又 ,【点睛】本小题考查正方形的性质、轴对称的性质、多边形内角与外角的关系、全等三角形的判定与性质、相似三角形的判定与性质、平行线的判定与性质、三角形中位线定理、圆的基本概念与性质、解直角三角形等基础知识,考查推理能力、运算能力,考查空间观念与几何直观,考查化归与转化思想9、 ( 1 ) -1 ;( 2 ) ; 见解析【分析】( 1 )先求得c=1 ,根据抛物线与x轴只有一个公共点,转化为判别式=0 ,从而构造二次函数求解即可;( 2 ) 根据抛物线与x轴只有一个公共点, 得抛物线上的点只能落在x轴的同侧,据此判断即可; 证明AB=B
22、C即可【详解】解:因为抛物线与x轴只有一个公共点,以方程有两个相等的实数根,所以,即( 1 )因为抛物线过点,所以,所以,即所以,当时,取到最小值( 2 ) 因为抛物线与x轴只有一个公共点,所以抛物线上的点只能落在x轴的同侧又点中恰有两点在抛物线的图象上,所以只能是在抛物线的图象上,由对称性可得抛物线的对称轴为,所以,即,因为,所以又点在抛物线的图象上,所以,故抛物线的解析式为 由题意设,则记直线为m,分别过M,N作,垂足分别为E,F,即,因为,所以又,所以,所以所以,所以,即所以,即 把代入,得,解得,所以 将 代入 ,得,即,解得,即所以过点A且与x轴垂直的直线为,将代入,得,即,将代入,
23、得,即,所以,因此,所以与的面积相等【点睛】本小题考查一次函数和二次函数的图象与性质、相似三角形的判定与性质、三角形面积等基础知识,突出运算能力、推理能力、空间观念与几何直观、创新意识,灵活运用函数与方程思想、数形结合思想及化归与转化思想求解是解题的关键三、填空题三、填空题1、 1【分析】结合题意,将点代入到,通过计算即可得到答案【详解】 反比例函数的图象过点,即故答案为: 1 【点睛】本题考查了反比例函数的知识;解题的关键是熟练掌握反比例函数图像的性质,从而完成求解2、 答案不唯一(如等)【分析】从无理数的三种形式: 开方开不尽的数, 无限不循环小数, 含有 的数,【详解】根据无理数的定义写
24、一个无理数,满足即可;所以可以写: 开方开不尽的数: 无限不循环小数, 含有 的数等只要写出一个满足条件的x即可故答案为:答案不唯一(如等)【点睛】本题考查了无理数的定义, 解答本题的关键掌握无理数的三种形式: 开方开不尽的数,无限不循环小数, 含有 的数3、【分析】利用样本中的优秀率来估计整体中的优秀率, 从而得出总体中的中长跑成绩优秀的学生人数【详解】解:由图知:样本中优秀学生的比例为:,该校中长跑成绩优秀的学生人数是:(人)故答案是:【点睛】本题考查了利用样本估计总体的统计思想,解题的关键是:根据图中信息求出样本中优秀率作为总体中的优秀率,即可求出总体中优秀的人数4、【分析】根据角平分线
25、的性质,角平分线上的点到角的两边的距离相等,即可求得【详解】如图,过D作,则D到的距离为DE平分,点D到的距离为故答案为【点睛】本题考查了角平分线的性质,点到直线的距离等知识,理解点到直线的距离的定义,熟知角平分线的性质是解题关键5、 4【分析】由条件变形得,x-y=xy,把此式代入所求式子中,化简即可求得其值【详解】由得:xy+y=x,即x-y=xy故答案为: 4【点睛】本题是求代数式的值, 考查了整体代入法求代数式的值, 关键是根据条件, 变形为x-y=xy,然后整体代入6、 【分析】 利用四边形内角和为即可求证; 过作,证明即可得结论; 分别求出G到边的距离的范围,再进行判断; 点G到边的距离的最大值为当时,GE即为所求【详解】四边形是矩形, 四边形内角和为 正确 如图:过作,又即点G到边的距离一定相等 正确 如图:过作而所以点G到边的距离不可能相等 不正确 如图:当时,点G到边的距离的最大 正确综上所述: 正确故答案为 【点睛】本题考查了动点问题,四边形内角和为,全等三角形的证明,点到直线的距离,锐角三角函数,矩形的性质,熟悉矩形的性质是解题的关键