1、一、区域连通性的分类一、区域连通性的分类 设设D为平面区域为平面区域, , 如果如果D内任一闭曲线所内任一闭曲线所围成的部分都属于围成的部分都属于D, , 则称则称D为平面单连通区为平面单连通区域域, , 否则称为复连通区域否则称为复连通区域. .复连通区域复连通区域单连通区域单连通区域DD4.3 Green公式公式及应用及应用 设闭区域设闭区域D由分段光滑的曲线由分段光滑的曲线L围围成成, ,函数函数),(),(yxQyxP及及在在D上具有一阶连上具有一阶连续偏导数续偏导数, , 则有则有 LDQdyPdxdxdyyPxQ)( (1) (1)其中其中L是是D的取正向的边界曲线的取正向的边界曲
2、线, ,公式公式(1)(1)叫做叫做格林公式格林公式. .二、格林公式二、格林公式定理定理1 1连成连成与与由由21LLL组成组成与与由由21LLL边界曲线边界曲线L L的正向的正向: 当观察者沿边界行走时当观察者沿边界行走时,区区域域D总在他的左边总在他的左边.2LD1L2L1LD),()(),(21bxaxyxyxD 证明证明(1)(1)若区域若区域D既是既是 X型型又是又是 Y型型,即平行于即平行于坐标轴的直线和坐标轴的直线和L至至多交于两点多交于两点.),()(),(21dycyxyyxD yxo abDcd)(1xy )(2xy ABCE)(2yx )(1yx dxxQdydxdyx
3、QyydcD )()(21 dcdcdyyyQdyyyQ),(),(12 CAECBEdyyxQdyyxQ),(),( EACCBEdyyxQdyyxQ),(),( LdyyxQ),(同理可证同理可证 LDdxyxPdxdyyP),( 若若区区域域D由由按按段段光光滑滑的的闭闭曲曲线线围围成成. .如如图图, ,证明证明(2)(2)L1L2L3LD1D2D3D两式相加得两式相加得 LDQdyPdxdxdyyPxQ)(将将D分成三个既是分成三个既是 X型又是型又是 Y型的区域型的区域1D, ,2D, ,3D. . 321)()(DDDDdxdyyPxQdxdyyPxQ 321)()()(DDDd
4、xdyyPxQdxdyyPxQdxdyyPxQ 321LLLQdyPdxQdyPdxQdyPdx LQdyPdx1D2D3DL1L2L3L),(32, 1来说为正方向来说为正方向对对DLLLGD3L2LFCE1LAB证明证明(3)(3) 若区域不止由一条闭曲若区域不止由一条闭曲线所围成线所围成. .添加直线段添加直线段ABAB, ,CECE. .则则D的边界曲线由的边界曲线由ABAB, ,2L, ,BA,BA,AFC,CEAFC,CE, , 3L, , ECEC及及CGACGA构成构成. .由由(2)知知 DdxdyyPxQ)( CEAFCBALAB2 CGAECLQdyPdx)(3 LQdy
5、Pdx 231)(LLLQdyPdx),(32, 1来说为正方向来说为正方向对对DLLL便便于于记记忆忆形形式式: LDQdyPdxdxdyQPyx.格格林林公公式式的的实实质质: : 沟沟通通了了沿沿闭闭曲曲线线的的积积分分与与二二重重积积分分之之间间的的联联系系.xyoL例例 1 1 计算计算 ABxdy,其中曲其中曲线线AB是半径为是半径为r的圆在的圆在第一象限部分第一象限部分.解解 引引入入辅辅助助曲曲线线L,1. 1. 简化曲线积分简化曲线积分ABDBOABOAL 应应用用格格林林公公式式, xQP , 0 有有三、简单应用三、简单应用 LDxdydxdy, BOABOAxdyxdy
6、xdy, 0, 0 BOOAxdyxdy由于由于.412rdxdyxdyDAB 例例 2 2 计计算算 Dydxdye2,其其中中D是是以以)1 , 0(),1 , 1(),0 , 0(BAO为为顶顶点点的的三三角角形形闭闭区区域域.解解 令令2, 0yxeQP ,2. 2. 简化二重积分简化二重积分xyoAB11D则则 2yeyPxQ ,应应用用格格林林公公式式, ,有有 BOABOAyDydyxedxdye22 1022dxxedyxexOAy).1(211 e例例3 3 计算计算 Lyxydxxdy22, ,其中其中L为一条无重点为一条无重点, ,分段光滑且不经过原点的连续闭曲线分段光滑
7、且不经过原点的连续闭曲线, ,L的方的方向为逆时针方向向为逆时针方向. .则则当当022 yx时时, , 有有yPyxxyxQ 22222)(.记记L所所围围成成的的闭闭区区域域为为D,解解令令2222,yxxQyxyP ,L( (1 1) ) 当当D )0, 0(时时, ,(2) 当当D )0 , 0(时时,1DrlxyoLD由由格格林林公公式式知知 Lyxydxxdy022作作位位于于D内内圆圆周周 222:ryxl ,记记1D由由L和和l所所围围成成,应应用用格格林林公公式式,得得yxo lLyxydxxdyyxydxxdy2222xyor1DlL02222 lLyxydxxdyyxyd
8、xxdy(其其 中中l的的 方方 向向取取逆逆时时针针方方向向).2 (注意格林公式的条件注意格林公式的条件) drrr22222sincos 20格林公式格林公式: LDQdyPdxdxdyyPxQ)(取取,xQyP 得得 LDydxxdydxdy2闭闭区区域域D的的面面积积 LydxxdyA21.取取, 0 xQP 得得 LxdyA取取, 0, QyP 得得 LydxA3. 3. 计算平面面积计算平面面积曲线曲线AMO由函数由函数, 0,axxaxy 表示表示,例例 4 4 计计算算抛抛物物线线)0()(2 aaxyx与与x轴轴所所围围成成的的面面积积. .解解ONA为为直直线线0 y.
9、LydxxdyA21 AMOONAydxxdyydxxdy2121)0 ,(aANM AMOydxxdy21dxxaxdxaxaxa)()12(210 .61420adxxaa )0 ,(aANMGyxo 1LQdyPdx则则称称曲曲线线积积分分 LQdyPdx在在G内内与与路路径径无无关关, ,四、四、曲线积分与路径无关的条件 2LQdyPdx1L2LBA如果在区域如果在区域G内有内有 否否则则与与路路径径有有关关. . 设开区域设开区域G是一个单连通域是一个单连通域, , 函数函数),(),(yxQyxP在在G内具有一阶连续偏导数内具有一阶连续偏导数, ,则曲线积分则曲线积分 LQdyPd
10、x在在G内与路径无关内与路径无关(或沿(或沿G内任意闭曲线的曲线积分为零)的充内任意闭曲线的曲线积分为零)的充要条件是要条件是xQyP 在在G内恒成立内恒成立. .定理定理2 2(1) 开开区区域域G是是一一个个单单连连通通域域.(2) 函函数数),(),(yxQyxP在在G内内具具有有一一阶阶连连续续偏偏导导数数.两条件缺一不可两条件缺一不可有关定理的说明:有关定理的说明:五、二元函数的全微分求积五、二元函数的全微分求积 设开区域设开区域G是一个单连通域是一个单连通域, , 函数函数),(),(yxQyxP在在G内具有一阶连续偏导内具有一阶连续偏导数数, , 则则dyyxQdxyxP),()
11、,( 在在G内为某一内为某一函数函数),(yxu的全微分的充要条件是等式的全微分的充要条件是等式xQyP 在在G内恒成立内恒成立. .定理定理3 3xQyP 若若 ),(),(1100yxByxAQdyPdx则则dyyxQdxyxPyyxx),(),(101010 ),(01yxC ),(11yxB xyo),(00yxA dxyxPdyyxQxxyy),(),(101010 或或xxyxyyP2)2(2 xyxxxQ2)(42 解解 xQyP ,原积分与路径无关原积分与路径无关 故故原原式式 101042)1(dyydxx.1523 积积分分与与路路径径无无关关xQyP ,解解,2)(2xy
12、xyyyP ),()(xyxyxxQ ,),(2xyyxP ),(),(xyyxQ 由由0)0( ,知知0 c 2)(xx .故故 )1 , 1()0,0(2)(dyxydxxy由由xyxy2)( cxx 2)( 10100ydydx.21 六、小结六、小结与路径无关的四个等价命题与路径无关的四个等价命题条条件件在在单单连连通通开开区区域域D上上),(),(yxQyxP具具有有连连续续的的一一阶阶偏偏导导数数, ,则则以以下下四四个个命命题题成成立立. . LQdyPdxD与与路路径径无无关关内内在在)1( CDCQdyPdx闭闭曲曲线线, 0)2(QdyPdxduyxUD 使使内内存存在在在
13、在),()3(xQyPD ,)4(内内在在等等价价命命题题练练 习习 题题二、二、 计算计算 Ldyyxdxxxy)()2(22其中其中L是由抛物线是由抛物线2xy 和和xy 2所围成的区域的正向边界曲线所围成的区域的正向边界曲线, ,并并验证格林公式的正确性验证格林公式的正确性 . .三、三、 利用曲线积分利用曲线积分, ,求星形线求星形线taytax33sin,cos 所所围成的图形的面积围成的图形的面积 . .四、证明曲线积分四、证明曲线积分 )4,3()2, 1(2232)36()6(dyxyyxdxyxy在整个在整个xoy面面内与路径无关内与路径无关, ,并计算积分值并计算积分值 .
14、 .五、利用格林公式五、利用格林公式, ,计算下列曲线积分计算下列曲线积分: :1 1、 Ldyyxdxyx)sin()(22其中其中L是在圆周是在圆周 22xxy 上由点上由点(0,0)(0,0)到点到点(1,1)(1,1)的一段弧;的一段弧;2 2、求曲线积分、求曲线积分 AMBdyyxdxyxI221)()(和和 ANBdyyxdxyxI222)()(的差的差. .其中其中AMB是过原点和是过原点和)1,1(A, ,)6,2(B且其对称轴垂直于且其对称轴垂直于x轴的抛物线上的弧段轴的抛物线上的弧段, , AMB是连接是连接BA ,的线段的线段 . .六、计算六、计算 Lyxydxxdy2
15、2, ,其中其中L为不经过原点的光滑闭曲为不经过原点的光滑闭曲 线线 .( .(取逆时针方向取逆时针方向) )七、验证七、验证yxxdxxyyx23228()83( dyyey)12 在整在整个个xoy平面内是某一函数平面内是某一函数),(yxu的全微分的全微分, ,并求这并求这样一个样一个),(yxu. .八、试确定八、试确定 , ,使得使得dyryxdxryx 22 是某个函数是某个函数),(yxu的全微分的全微分, ,其中其中22yxr , ,并求并求),(yxu. .九、设在半平面九、设在半平面0 x内有力内有力)(3jyixrkF 构成力构成力场场, ,其中其中k为常数为常数, , 22yxr . .证明在此力场中证明在此力场中场力所作的功与所取的路径无关场力所作的功与所取的路径无关 . .练习题答案练习题答案七七、)(124),(223yyeyeyxyxyxu . .八八、yryxu ),(, 1 . .