1、 第九章 二、全微分在近似计算中的应用二、全微分在近似计算中的应用 应用 第三节(2)一元函数 y = f (x) 的微分)( xoxAyxxfy)(d近似计算估计误差机动 目录 上页 下页 返回 结束 本节内容本节内容:一、全微分的定义、全微分的定义 全微分一、全微分的定义、全微分的定义 定义定义: 如果函数 z = f ( x, y )在定义域 D 的内点( x , y ),(),(yxfyyxxfz可表示成, )(oyBxAz其中 A , B 不依赖于 x , y , 仅与 x , y 有关,称为函数),(yxf在点 (x, y) 的全微分全微分, 记作yBxAfz dd若函数在域 D
2、内各点都可微,22)()(yx则称函数 f ( x, y ) 在点( x, y) 可微可微,机动 目录 上页 下页 返回 结束 处全增量则称此函数在在D 内可微内可微.A xB y (2) 偏导数连续),(),(yxfyyxxfz)()(lim0oyBxA下面两个定理给出了可微与偏导数的关系:(1) 函数可微函数 z = f (x, y) 在点 (x, y) 可微),(lim00yyxxfyx由微分定义 :得zyx00lim0),(yxf函数在该点连续机动 目录 上页 下页 返回 结束 偏导数存在 函数可微 即定理定理1 1(必要条件)若函数 z = f (x, y) 在点(x, y) 可微
3、,则该函数在该点偏导数yzxz,yyzxxzzd( , )( , )xzfyfyxz同样可证,Byzyyzxxzzd证证: 由全增量公式, )(oyBxAz,0y令)(xoxA必存在,且有得到对 x 的偏增量xxx因此有 xzxx0limA机动 目录 上页 下页 返回 结束 反例反例: 函数),(yxf易知(0, 0)(0, 0)0 ,xyff 但)0, 0()0, 0(yfxfzyx因此,函数在点 (0,0) 不可微 .)(o注意注意: 定理1 的逆定理不成立 .22)()(yxyx22)()(yxyx22)()(yxyx0偏导数存在函数 不一定可微 !即:0,2222yxyxyx0, 02
4、2 yx机动 目录 上页 下页 返回 结束 ),(yyxxf定理定理2 (充分条件)yzxz,证证:),(),(yxfyyxxfz)1,0(21xyxfx),( yyyxfy),(2xyyxxfx),(1),(yyxf),( yxf),(yyxfyyxfy),(若函数),(yxfz 的偏导数,),(连续在点yx则函数在该点可微分.机动 目录 上页 下页 返回 结束 0lim00yx,0lim00yxzyyxfxyxfyx),(),(yyxfxyxfzyx),(),(xy 所以函数),(yxfz ),(yxyx在点可微.机动 目录 上页 下页 返回 结束 0lim00yx,0lim00yx注意到
5、, 故有)(oxxu 三元函数),(zyxfu ud习惯上把自变量的增量用微分表示,ud记作dxu故有下述叠加原理ddddxyzuuuu称为偏微分偏微分.yyudzzudduxxuyduzd的全微分为yyuzzu于是机动 目录 上页 下页 返回 结束 uuuzyxd,d,d例例1. 计算函数在点 (2,1) 处的全微分. yxez 解解:xz222) 1 , 2(,) 1 , 2(eyzexzyexezd2dd22) 1 , 2(例例2. 计算函数的全微分. zyeyxu2sin解解: ud1 dxyyd) cos(221dyzyezyz,yxeyyxex)d2d(2yxezyez机动 目录
6、上页 下页 返回 结束 可知当*二、全微分在近似计算中的应用二、全微分在近似计算中的应用由全微分定义xy)(),(),(oyyxfxyxfzyx),(yyxxfyyxfxyxfyx),(),(较小时,yyxfxyxfzzyx),(),(dzd及有近似等式:),(yxf机动 目录 上页 下页 返回 结束 (可用于近似计算; 误差分析) (可用于近似计算) 半径由 20cm 增大解解: 已知,2hrVV,100,20hr) 1(2005. 01002022V即受压后圆柱体体积减少了 .cm2003例例3. 有一圆柱体受压后发生形变,到 20.05cm , 则 rrh2hr 21,05. 0hr)c
7、m(2003高度由100cm 减少到 99cm ,体积的近似改变量. 机动 目录 上页 下页 返回 结束 求此圆柱体例例4.4.计算的近似值. 02. 204. 1解解: 设yxyxf),(,则),(yxfx取, 2, 1yx则)02. 2,04. 1(04. 102. 2fyfxffyx)2, 1 ()2, 1 ()2, 1 (08. 102. 0004. 021),(yxfy,1yxyxxyln02. 0,04. 0yx机动 目录 上页 下页 返回 结束 内容小结内容小结1. 微分定义:),(yxfz zyyxfxyxfyx),(),(zdyyxfxyxfyxd),(d),(22)()(y
8、x2. 重要关系:)( o函数可导函数可导函数可微函数可微偏导数连续偏导数连续函数连续函数连续机动 目录 上页 下页 返回 结束 3. 微分应用 近似计算zyyxfxyxfyx),(),(),(yyxxfyyxfxyxfyx),(),(),(yxf机动 目录 上页 下页 返回 结束 思考与练习思考与练习函数),(yxfz 在),(00yx可微的充分条件是( );),(),()(00连续在yxyxfA),(),(, ),()(00yxyxfyxfByx在的某邻域内存在 ;yyxfxyxfzCyx),(),()(0)()(22yx当时是无穷小量 ;22)()(),(),()(yxyyxfxyxfz
9、Dyx0)()(22yx当时是无穷小量 .1. 选择题D机动 目录 上页 下页 返回 结束 zfyfxffzyyd)0 , 0 , 0(d)0 , 0 , 0(d)0 , 0 , 0(d)0 , 0 , 0(2. 设,coscoscos1coscoscos),(zyxxzzyyxzyxf.d)0 , 0 , 0(f求解解: xxxfcos3)0 , 0 ,(0cos3)0 , 0 , 0(xxxfx41利用轮换对称性 , 可得41)0 , 0 , 0()0 , 0 , 0(zyff)dd(d41zyx机动 目录 上页 下页 返回 结束 注意注意: x , y , z 具有 轮换对称性轮换对称性
10、 .d,arctanzyxyxz求答案答案: 22dddyxyxxyz3. 已知第四节 目录 上页 下页 返回 结束 在点 (0,0) 可微 .备用题备用题在点 (0,0) 连续且偏导数存在,续,),(yxf而),(yxf)0 , 0(),(,1sin22yxyxyx)0 , 0(),(, 0yx证证: 1) 因221sinyxxy0),(lim00yxfyx)0 , 0(f故函数在点 (0, 0) 连续 ; 但偏导数在点 (0,0) 不连 机动 目录 上页 下页 返回 结束 证明函数xy222yx 所以),(yxf)0 , 0(),(,1sin22yxyxxy)0 , 0(),(, 0yx)
11、,(yxfx,)0 , 0(),(时当yx,)0 , 0(),(时趋于沿射线当点xyyxP,0)0 ,(xf;0)0 , 0(xf. 0)0 , 0(yf同理y221sinyx 3222)(yxyx221cosyx ),(lim)0 , 0(),(yxfxxx极限不存在 ,),(yxfx在点(0,0)不连续 ;同理 ,),(yxfy在点(0,0)也不连续.xx(lim0|21sinx33|22xx)|21cosx2)3)题目 目录 上页 下页 返回 结束 ),(yxf)0 , 0(),(,1sin22yxyxxy)0 , 0(),(, 0yx,)()(22yx4) 下面证明)0 , 0(),(在点yxf可微 :yfxffyx)0 , 0()0 , 0(1sinyx x 00.)0 , 0(),(可微在点yxf说明说明: 此题表明, 偏导数连续只是可微的充分条件.令则题目 目录 上页 下页 返回 结束