高等数学课件:D1-3函数的极限(第一章).ppt

上传人(卖家):罗嗣辉 文档编号:2057865 上传时间:2022-01-26 格式:PPT 页数:16 大小:576.50KB
下载 相关 举报
高等数学课件:D1-3函数的极限(第一章).ppt_第1页
第1页 / 共16页
高等数学课件:D1-3函数的极限(第一章).ppt_第2页
第2页 / 共16页
高等数学课件:D1-3函数的极限(第一章).ppt_第3页
第3页 / 共16页
高等数学课件:D1-3函数的极限(第一章).ppt_第4页
第4页 / 共16页
高等数学课件:D1-3函数的极限(第一章).ppt_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、 第一章 一、自变量趋于有限值时函数的极限一、自变量趋于有限值时函数的极限第三节, )(xfy 对0)1(xx 0)2(xx0)3(xxx)4(x)5(x)6(自变量变化过程的六种形式:二、自变量趋于无穷大时函数的极限二、自变量趋于无穷大时函数的极限本节内容本节内容 :机动 目录 上页 下页 返回 结束 函数的极限 一、自变量趋于有限值时函数的极限一、自变量趋于有限值时函数的极限1. 0 xx 时函数极限的定义时函数极限的定义引例引例. 测量正方形面积.面积为A )边长为(真值:;0 x边长面积2x直接观测值间接观测值任给精度 , 要求 Ax2确定直接观测值精度 :0 xx0 xAx机动 目录

2、 上页 下页 返回 结束 定义定义1 . 设函数)(xf在点0 x的某去心邻域内有定义 ,0,0当00 xx时, 有 Axf)(则称常数 A 为函数)(xf当0 xx 时的极限,Axfxx)(lim0或)()(0 xxAxf当即,0,0当),(0 xx时, 有若记作 Axf)(Axfxx)(lim0几何解释几何解释:0 x0 xAAAx0 xy)(xfy 极限存在函数局部有界(P36定理2)这表明: 机动 目录 上页 下页 返回 结束 例例1. 证明)(lim0为常数CCCxx证证:Axf)(CC 0故,0对任意的,0当00 xx时 , 0CC因此CCxx0lim总有机动 目录 上页 下页 返

3、回 结束 例例2. 证明1)12(lim1xx证证:Axf)(1) 12(x12x欲使,0取,2则当10 x时 , 必有1) 12()(xAxf因此,)( Axf只要,21x1)12(lim1xx机动 目录 上页 下页 返回 结束 例例3. 证明211lim21xxx证证:Axf)(2112xx21 x故,0取,当10 x时 , 必有2112xx因此211lim21xxx1 x机动 目录 上页 下页 返回 结束 例例4. 证明: 当00 x证证:Axf)(0 xx 001xxx欲使,0且. 0 x而0 x可用0 xx因此,)( Axf只要,00 xxx00limxxxx.lim00 xxxx时

4、00 xxxx故取,min00 xx则当00 xx时,00 xxx保证 .必有ox0 xx机动 目录 上页 下页 返回 结束 2. 保号性定理保号性定理定理定理1 . 若,)(lim0Axfxx且 A 0 ,),(0时使当xx. 0)(xf)0)(xf证证: 已知,)(lim0Axfxx即,0, ),(0 x当时, 有.)(AxfA当 A 0 时, 取正数,A则在对应的邻域上. 0)(xf( 0)(A则存在( A 0 ),(0 x),(0 xx),(0 x(P37定理3)0 x0 xAAAx0 xy)(xfy )0(机动 目录 上页 下页 返回 结束 AxfA)(:0A:0A若取,2A则在对应

5、的邻域上 若,0)(lim0Axfxx则存在使当时, 有.2)(Axf推论推论:23)(2AxfA2)(23AxfA),(0 x, ),(0 x),(0 xx(P37 推论)0 x0 xAAAx0 xy)(xfy 分析分析:机动 目录 上页 下页 返回 结束 定理定理 2 . 若在0 x的某去心邻域内0)(xf)0)(xf, 且 ,)(lim0Axfxx则. 0A)0(A证证: 用反证法.则由定理 1,0 x的某去心邻域 , 使在该邻域内,0)(xf与已知所以假设不真, .0A(同样可证0)(xf的情形)思考: 若定理 2 中的条件改为, 0)(xf是否必有?0A不能不能! 0lim20 xx

6、存在如 假设 A 0 , 条件矛盾,故时,当0)(xf机动 目录 上页 下页 返回 结束 3. 左极限与右极限左极限与右极限左极限 :)(0 xfAxfxx)(lim0,0,0当),(00 xxx时, 有.)( Axf右极限 :)(0 xfAxfxx)(lim0,0,0当),(00 xxx时, 有.)( Axf定理定理 3 .Axfxx)(lim0Axfxfxxxx)(lim)(lim00( P38 题8 )机动 目录 上页 下页 返回 结束 例例5. 设函数0,10,00, 1)(xxxxxxf讨论 0 x时)(xf的极限是否存在 . xyo11 xy11 xy解解: 利用定理 3 .因为)

7、(lim0 xfx) 1(lim0 xx1)(lim0 xfx) 1(lim0 xx1显然, )0()0( ff所以)(lim0 xfx不存在 .机动 目录 上页 下页 返回 结束 XXAAoxy)(xfy A二、自变量趋于无穷大时函数的极限二、自变量趋于无穷大时函数的极限定义定义2 . 设函数xxf当)(大于某一正数时有定义,若,0X,)(,AxfXx有时当则称常数时的极限,Axfx)(lim)()(xAxf当或几何解释几何解释:AxfA)(XxXx或记作直线 y = A 为曲线)(xfy 的水平渐近线,0 xxf当)(机动 目录 上页 下页 返回 结束 A 为函数例例6. 证明. 01li

8、mxx证证:01xx1取,1X,时当Xx 01x因此01limxx注注:就有故,0欲使,01x即,1xoxyxy1机动 目录 上页 下页 返回 结束 .10的水平渐近线为xyyx1x11oyxxxgxxf11)(,1)(直线 y = A 仍是曲线 y = f (x) 的渐近线 .两种特殊情况两种特殊情况 :Axfx)(lim,0,0X当Xx 时, 有 Axf)(Axfx)(lim,0,0X当Xx时, 有 Axf)(几何意义几何意义 :例如,都有水平渐近线;0yxxxgxf21)(,21)(都有水平渐近线. 1y又如,oxyx21x21机动 目录 上页 下页 返回 结束 内容小结内容小结1. 函数极限的或X定义及应用2. 函数极限的性质:保号性定理与左右极限等价定理思考与练习思考与练习1. 若极限)(lim0 xfxx存在,)()(lim00 xfxfxx2. 设函数)(xf且)(lim1xfx存在, 则. a3例3 作业作业 P37 1(4) ; 2(2) ; 5 ; 6 ; 7 ; 9 Th1Th3Th2是否一定有第四节 目录 上页 下页 返回 结束 1, 121,2xxxxa?

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(高等数学课件:D1-3函数的极限(第一章).ppt)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|