高等数学(同济大学)课件下第9-3三重积分.ppt

上传人(卖家):罗嗣辉 文档编号:2057885 上传时间:2022-01-26 格式:PPT 页数:27 大小:885.50KB
下载 相关 举报
高等数学(同济大学)课件下第9-3三重积分.ppt_第1页
第1页 / 共27页
高等数学(同济大学)课件下第9-3三重积分.ppt_第2页
第2页 / 共27页
高等数学(同济大学)课件下第9-3三重积分.ppt_第3页
第3页 / 共27页
高等数学(同济大学)课件下第9-3三重积分.ppt_第4页
第4页 / 共27页
高等数学(同济大学)课件下第9-3三重积分.ppt_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、第三节一、三重积分的概念三重积分的概念 二、三重积分的计算二、三重积分的计算机动 目录 上页 下页 返回 结束 三重积分 第九章 一、三重积分的概念一、三重积分的概念 类似二重积分解决问题的思想, 采用kkkkv),( ),(kkkkv引例引例: 设在空间有限闭区域 内分布着某种不均匀的物质,),(Czyx求分布在 内的物质的可得nk 10limM“大化小大化小, 常代变常代变, 近似和近似和, 求极限求极限”解决方法解决方法:质量 M .密度函数为机动 目录 上页 下页 返回 结束 定义定义. 设,),( , ),(zyxzyxfkkknkkvf),(lim10存在,),(zyxfvzyxf

2、d),(称为体积元素体积元素, vd.dddzyx若对 作任意分割任意分割: 任意取点任意取点则称此极限为函数在上的三重积分三重积分.在直角坐标系下常写作三重积分的性质与二重积分相似.性质性质: 例如 ),2,1(nkvk,),(kkkkv下列“乘中值定理中值定理.),(zyxf设在有界闭域 上连续,则存在,),(使得vzyxfd),(Vf),(V 为 的体积, 积和式” 极限记作记作机动 目录 上页 下页 返回 结束 二、三重积分的计算二、三重积分的计算1. 利用直角坐标计算三重积分利用直角坐标计算三重积分方法方法1 . 投影法 (“先一后二”)方法方法2 . 截面法 (“先二后一”) 方法

3、方法3 . 三次积分法 ,0),(zyxf先假设连续函数 并将它看作某物体 通过计算该物体的质量引出下列各计算最后, 推广到一般可积函数的积分计算. 的密度函数 , 方法:机动 目录 上页 下页 返回 结束 zxyDDyxdd 方法方法1. 投影法投影法 (“先一后二先一后二” ) Dyxyxzzyxz),(),(),(:21yxzzyxfyxzyxzddd),(),(),(21该物体的质量为vzyxfd),(),(),(21d),(yxzyxzzzyxfDyxzyxzzzyxfyx),(),(21d),(ddyxzyxfdd),(细长柱体微元的质量为),(2yxzz ),(1yxzz yxd

4、d微元线密度记作机动 目录 上页 下页 返回 结束 ab方法方法2. 截面法截面法 (“先二后一先二后一”)bzaDyxz),(:为底, d z 为高的柱形薄片质量为zD以xyz该物体的质量为vzyxfd),(baZDyxzyxfdd),(ZDbayxzyxfzdd),(dzdzzDzDyxzyxfdd),(zzyxfd),(面密度zd记作机动 目录 上页 下页 返回 结束 投影法方法方法3. 三次积分法三次积分法设区域:利用投影法结果 ,bxaxyyxyDyx)()(:),(21),(),(21yxzzyxz把二重积分化成二次积分即得:vzyxfd),(),(),(21d),(ddyxzyx

5、zDzzyxfyxvzyxfd),(),(),(21d),(yxzyxzzzyxf)()(21dxyxyybaxd机动 目录 上页 下页 返回 结束 当被积函数在积分域上变号时, 因为),(zyxf2),(),(zyxfzyxf),(1zyxf),(2zyxf均为非负函数根据重积分性质仍可用前面介绍的方法计算.2),(),(zyxfzyxf机动 目录 上页 下页 返回 结束 小结小结: 三重积分的计算方法三重积分的计算方法方法方法1. “先一后二先一后二”方法方法2. “先二后一先二后一”方法方法3. “三次积分三次积分”),(),(21d),(ddyxzyxzDzzyxfyxvzyxfd),

6、(ZDbayxzyxfzdd),(d),(),()()(2121d),(ddyxzyxzxyxybazzyxfyx具体计算时应根据vzyxfd),(vzyxfd),(三种方法(包含12种形式)各有特点,被积函数及积分域的特点灵活选择. 机动 目录 上页 下页 返回 结束 其中 为三个坐标例例1. 计算三重积分,dddzyxx12zyx所围成的闭区域 .1xyz121解解:zyxxddd)1(01021d)21 (dxyyxxxyxz210d1032d)2(41xxxxyxz210)1(021xy10 x )1(021dxy10d xx481面及平面机动 目录 上页 下页 返回 结束 xyz例例

7、2. 计算三重积分,ddd2zyxz. 1:222222czbyax其中解解: :zyxzddd2cczczbazd)1(2222czc2222221:czbyaxDzzDyxddcczz d23154cbaabc用用“先二后一先二后一 ” zDz机动 目录 上页 下页 返回 结束 oxyz2. 利用柱坐标计算三重积分利用柱坐标计算三重积分 ,R),(3zyxM设,代替用极坐标将yx),z(则就称为点M 的柱坐标.z200sinyzz cosx直角坐标与柱面坐标的关系:常数坐标面分别为圆柱面常数半平面常数z平面oz),(zyxM)0 ,(yx机动 目录 上页 下页 返回 结束 如图所示, 在柱

8、面坐标系中体积元素为zzdddzvdddd因此zyxzyxfddd),(),(zF其中),sin,cos(),(zfzF适用范围适用范围:1) 积分域积分域表面用柱面坐标表示时方程简单方程简单 ;2) 被积函数被积函数用柱面坐标表示时变量互相分离变量互相分离.zdddxyzodd机动 目录 上页 下页 返回 结束 其中为由例例3. 计算三重积分zyxyxzddd22xyx2220),0(, 0yaazz所围解解: 在柱面坐标系下:cos202ddcos342032acos2020az 0及平面2axyzozvdddd20dazz0dzzddd2原式398a柱面cos2成半圆柱体.机动 目录 上

9、页 下页 返回 结束 o oxyz例例4. 计算三重积分解解: 在柱面坐标系下h:hz42dhdh2022)4(124)41ln()41(4hhhhz h2020h202d120d,1ddd22yxzyxzyx422)0( hhz所围成 .与平面其中由抛物面42rzvdddd原式 =机动 目录 上页 下页 返回 结束 3. 利用球坐标计算三重积分利用球坐标计算三重积分 ,R),(3zyxM设),(z其柱坐标为就称为点M 的球坐标.直角坐标与球面坐标的关系,ZOMMoxyzzr),(r则0200rcossinrx sinsinry cosrz 坐标面分别为常数r球面常数半平面常数锥面, rOM

10、令),(rMsinrcosrz 机动 目录 上页 下页 返回 结束 xyzo如图所示, 在球面坐标系中体积元素为ddrrddddsind2rrv 因此有zyxzyxfddd),(),(rF其中)cos,sinsin,cossin(),(rrrfrF适用范围适用范围:1) 积分域积分域表面用球面坐标表示时方程简单方程简单;2) 被积函数被积函数用球面坐标表示时变量互相分离变量互相分离.dddsin2rrd机动 目录 上页 下页 返回 结束 例例5. 计算三重积分,)(222zdydxdzyx22yxz为锥面2222Rzyx解解: 在球面坐标系下:zyxzyxddd)(222所围立体.40Rr 0

11、20其中 与球面dddsind2rrv Rrr04d)22(515R40dsin20dxyzo4Rr 机动 目录 上页 下页 返回 结束 例例6.求曲面)0()(32222azazyx所围立体体积.解解: 由曲面方程可知, 立体位于xoy面上部,cos0:3ar 利用对称性, 所求立体体积为vVdrrad3cos02dcossin32203a331a3cosar ,202020dsin20d4yoz面对称, 并与xoy面相切, 故在球坐标系下所围立体为且关于 xoz dddsind2rrv yzxar机动 目录 上页 下页 返回 结束 内容小结内容小结zyxdddzddddddsin2rr积分

12、区域多由坐标面被积函数形式简洁, 或坐标系 体积元素 适用情况直角坐标系柱面坐标系球面坐标系* * 说明说明:三重积分也有类似二重积分的换元积分公式换元积分公式:),(),(wvuzyxJ对应雅可比行列式为*ddd),(ddd),(wvuJwvuFzyxzyxf变量可分离.围成 ;机动 目录 上页 下页 返回 结束 2,zxz1. 将. )(),(Czyxf用三次积分表示,2,0 xx,42, 1yxyvzyxfId),(其中由所提示提示:20 xxy21212 zxI2d),(xzzyxf xy2121d20d x思考与练习思考与练习六个平面围成 ,:机动 目录 上页 下页 返回 结束 2.

13、 设, 1:222zyx计算vzyxzyxzd1) 1ln(222222提示提示: 利用对称性原式 = 122ddyxyx0奇函数222211222222d1) 1ln(yxyxzzyxzyxz机动 目录 上页 下页 返回 结束 zoxy23. 设由锥面22yxz和球面4222zyx所围成 , 计算.d)(2vzyxI提示提示:4利用对称性vzyxd)(222vzxzyyxzyxId)222(222用球坐标 rr d420dsin4020d221564机动 目录 上页 下页 返回 结束 作业作业P106 1(2),(3),(4); 4; 5; 7; 8; 9 (2); 10 (2) ; 11

14、(1),(4)第四节 目录 上页 下页 返回 结束 备用题备用题 1. 计算,ddd12zyxxyI所围成. 其中 由1,1,12222yzxzxy分析分析:若用“先二后一”, 则有zxxyyIyDdd1d201zxxyyyDdd1d210计算较繁! 采用“三次积分”较好.1zxy1o1机动 目录 上页 下页 返回 结束 :4528 1122yzx2211xzx11x1zxy1o1xxId1211zxxd2211yyzxd11221, 1,1222yzxzxy由所围, 故可 思考思考: 若被积函数为 f ( y ) 时, 如何计算简便? 表为 解解:机动 目录 上页 下页 返回 结束 2. 计算,ddd)sin5(2222zyxyxxyxI其中.4, 1),(2122围成由zzyxz解解:zyxxIddd2利用对称性zyxyxddd)(2122yxyxzzDdd)(d212241zrrz2032041ddd21214zxoy1zDzyxyxyxdddsin52220机动 目录 上页 下页 返回 结束

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 大学
版权提示 | 免责声明

1,本文(高等数学(同济大学)课件下第9-3三重积分.ppt)为本站会员(罗嗣辉)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|