1、1)(xfyqypy ),(为常数qp一、二阶常系数线性非齐次微分方程 :根据解的结构定理 , 其通解为Yy *y非齐次方程特解齐次方程通解求特解的方法根据 f (x) 的特殊形式 ,*y给出特解的待定形式,代入原方程比较两端表达式以确定待定系数 . 待定系数法待定系数法2)(xQex )()2(xQp)()(2xQqp)(xPemx1、 型)()(xPexfmx 为实数 ,)(xPm设特解为, )(*xQeyx其中 为待定多项式 , )(xQ )()(*xQxQeyx )()(2)(*2xQxQxQeyx 代入原方程 , 得 )(xQ (1) 若 不是特征方程的根, , 02qp即则取),(
2、xQm从而得到特解形式为. )(*xQeymx)()2(xQp)()(2xQqp)(xPm为 m 次多项式 .Q (x) 为 m 次待定系数多项式)(xfyqypy 3(2) 若 是特征方程的单根 , , 02qp,02 p)(xQ则为m 次多项式, 故特解形式为xmexQxy)(*(3) 若 是特征方程的重根 , , 02qp,02 p)(xQ 则是 m 次多项式,故特解形式为xmexQxy)(*2小结小结 对方程,)2, 1, 0()(*kexQxyxmk此结论可推广到高阶常系数线性微分方程 .)(xQ )()2(xQp)(xPm)()(2xQqp即即当 是特征方程的 k 重根 时,可设特
3、解4综上讨论综上讨论,)(*xQexymxk 设设 是重根是重根是单根是单根不是根不是根2,10k注:注:上述结论可推广到上述结论可推广到n阶常系数非齐次线性阶常系数非齐次线性微分方程(微分方程(k是重根次数)是重根次数).)(xfyqypy ),(为常数qp)()(xPexfmx5例例1.1332 xyyy求方程的一个特解.解解: 本题而特征方程为,0322rr不是特征方程的根 .设所求特解为,*10bxby代入方程 :13233010 xbbxb比较系数, 得330 b13210bb31,110bb于是所求特解为.31*xy0,06例例2. xexyyy265 求方程的通解. 解解: 本题
4、特征方程为,0652 rr其根为对应齐次方程的通解为xxeCeCY3221设非齐次方程特解为xebxbxy210)(*比较系数, 得120 b0210bb1,2110bb因此特解为.)1(*221xexxy3, 221rr代入方程得xbbxb01022所求通解为xxeCeCy3221.)(2221xexx ,27例例3. 求解定解问题 0)0()0()0( 123yyyyyy解解: 本题特征方程为, 02323rrr其根为设非齐次方程特解为,*xby代入方程得, 12b故,*21xy0321CCC21322CC2, 1, 0321rrr故对应齐次方程通解为1CY xeC2xeC23原方程通解为
5、x211Cy xeC2xeC23由初始条件得0432CC,041 143321CCC所求解为xeeyxx2141432)423(412xxeex8需多少时间需多少时间试问整个链条滑过钉子试问整个链条滑过钉子米,米,米,另一边下垂米,另一边下垂下垂下垂动开始时,链条的一边动开始时,链条的一边一无摩擦的钉子上,运一无摩擦的钉子上,运一质量均匀的链条挂在一质量均匀的链条挂在108解解例例4.oxm8m10,米米链条下滑了链条下滑了经过时间经过时间设链条的线密度为设链条的线密度为xt 则由牛顿第二定律得则由牛顿第二定律得,)8()10(22gxgxdtxdm . 0)0(, 0)0(,99 xxgxg
6、x即即解得解得, 1)(21)(3131 tgtgeetx8, x即即整个链条滑过钉子整个链条滑过钉子代入上式得代入上式得)()809ln(3秒秒 gt92、型xxPxxPexfnlxsin)(cos)()(ximexPxf)()()(ximexP)()(第二步第二步 求出如下两个方程的特解ximexPyqypy)()( yqypy分析思路:第一步第一步 将 f (x) 转化为第三步第三步 利用叠加原理求出原方程的特解第四步第四步 分析原方程特解的特点ximexP)()(10第一步第一步 利用欧拉公式将 f (x) 变形xexf)(ixPxPnl2)(2)(xie)(ixPxPnl2)(2)(
7、xie)(ximexPxf)()()(ximexP)()(ximexP)()(ximexP)()(则令,maxlnm )(xPl2xixiee)(xPnieexixi211 第二步第二步 求如下两方程的特解 i是特征方程的 k 重根 ( k = 0, 1), ximkexQxy)(1)()(次多项式为mxQm故ximexPyqypy)(111)()()( 等式两边取共轭 :ximexPyqypy)(111)(1y这说明为方程 的特解 .ximexPyqypy)()( ximexPyqypy)()( 设则 有特解:12第三步第三步 求原方程的特解 利用第二步的结果, 根据叠加原理, 原方程有特解
8、 :11*yyy xkexximximeQeQ原方程 yqypy xxPxxPenlxsin)(cos)(xkex)sin(cosxixQm)sin(cosxixQm xkexxRmcosxRmsinmmRR,其中均为 m 次多项式 .13第四步第四步 分析的特点yxRxRexyyymmxksincos11因11yy*yy所以mmRR,因此均为 m 次实多项式 .11yyy本质上为实函数 ,11yy14小小 结结:xxPxxPenlxsin)(cos)(对非齐次方程yqypy ),(为常数qpxRxRexymmxksincos*则可设特解:其中 为特征方程的 k 重根 ( k = 0, 1),
9、 ilnm,max上述结论也可推广到高阶方程的情形.15例例5. xxyy2cos 求方程的一个特解 .解解: 本题 特征方程, 2, 0故设特解为xdxcxbxay2sin)(2cos)(*不是特征方程的根,ii2代入方程得xxxadxcxcbxa2cos2sin)433(2cos)433(012r,)(xxPl, 0)(xPn比较系数 , 得9431,da.2sin2cos*9431xxxy于是求得一个特解13 a043cb03 c043ad0 cb16例例6. xxyy3sin303cos189 求方程的通解. 解解: 特征方程为, 092r其根为对应齐次方程的通解为xCxCY3sin3
10、cos21)3sin3cos(*xbxaxy比较系数, 得,5a,3b因此特解为)3sin33cos5(*xxxyir32, 1代入方程:xaxb3sin63cos6所求通解为xCxCy3sin3cos21为特征方程的单根 ,i3)3sin33cos5(xxxxx3sin303cos18因此设非齐次方程特解为17例例7.xyyysin2) 1 ()4( 解解: (1) 特征方程, 01224rr, 0)1(22r即有二重根, ir所以设非齐次方程特解为(*2xy )sincosxbxa(2) 特征方程, 024 rr0)1(22rr即有根irr4,32, 1, 0 xexyyxsin3)2()
11、4( 利用叠加原理 , 可设非齐次方程特解为)(*2baxxyxec)sincos(xkxdx设下列高阶常系数线性非齐次方程的特解形式:18当重力与弹性力抵消时, 物体处于 平衡状态, 上节例上节例1. 质量为m的物体自由悬挂在一端固定的弹簧上,力作用下作往复运动,xxo解解:阻力的大小与运动速度下拉物体使它离开平衡位置后放开,若用手向物体在弹性力与阻取平衡时物体的位置为坐标原点,建立坐标系如图. 设时刻 t 物位移为 x(t).(1) 自由振动方程:成正比, 方向相反.建立位移满足的微分方程.0dd2dd222xktxntx(2) 强迫振动方程:t phxktxntxsindd2dd2221
12、9例例8.求物体的运动规律. 解解: 问题归结为求解无阻尼强迫振动方程 tphxktxsindd222 当p k 时, 齐次通解: tkCtkCXcossin21)(sintkAt pbtpaxcossin非齐次特解形式:0,22bpkha因此原方程之解为上节例1 中若设物体只受弹性恢复力 f,sin的作用ptHF 和铅直干扰力xox代入可得: 20当干扰力的角频率 p 固有频率 k 时,)(sintkAxtppkhsin22自由振动强迫振动!22将很大振幅pkh 当 p = k 时, )cossin(tkbtkatx非齐次特解形式:代入可得: khba2, 0方程的解为 21若要利用共振现象
13、, 应使 p 与 k 尽量靠近, 或使 )(sintkAxtktkhcos2随着 t 的增大 , 强迫振动的振幅tkh2这时产生共振现象 .可无限增大,若要避免共振现象, 应使 p 远离固有频率 k ;p = k .自由振动强迫振动xox对机械来说, 共振可能引起破坏作用, 如桥梁被破坏,电机机座被破坏等, 但对电磁振荡来说, 共振可能起有利作用, 如收音机的调频放大即是利用共振原理. 22内容小结内容小结xmexPyqypy)(. 1 为特征方程的 k (0, 1, 2) 重根,xmkexQxy)(*则设特解为sin)(cos)(. 2xxPxxPeyqypynlx 为特征方程的 k (0,
14、 1 )重根, ixkexy*则设特解为sin)(cos)(xxRxxRmmnlm,max3. 上述结论也可推广到高阶方程的情形.23思考与练习思考与练习时可设特解为 xxxfcos)() 1当xexxxf22cos)()2当xy *xbxacos)(*yxdxcxbxa2sin)(2cos)(xek2)(xfyy 时可设特解为 xxPxxPexfnlxsin)(cos)()(xkexy*lnm,max提示提示:xdcxsin)(1 . (填空) 设sin)(cos)(xxRxxRmm242. 求微分方程xeyyy 44的通解 (其中为实数 ) .解解: 特征方程,0442rr特征根:221
15、rr对应齐次方程通解:xexCCY221)(2时,xeAy令代入原方程得,2)2(1A故原方程通解为xexCCy221)(xe2)2(12时,2xexBy令代入原方程得,21B故原方程通解为xexCCy221)(xex221253. 已知二阶常微分方程xecybyay 有特解, )1 (2xxexey求微分方程的通解 .解解: 将特解代入方程得恒等式xxxxecexbaeaeba)1 ()2()1 (比较系数得01baca 201ba0a1b2c故原方程为xeyy2 对应齐次方程通解:xxeCeCY21xxexey原方程通解为xxeCeCy21xex26二、欧拉方程二、欧拉方程欧拉方程欧拉方程
16、 )(1) 1(11)(xfypyxpyxpyxnnnnnn)(为常数kp,tex 令常系数线性微分方程xtln即27欧拉方程的算子解法欧拉方程的算子解法: )(1) 1(11)(xfypyxpyxpyxnnnnnn,tex 令则xyddxttyddddtyx dd122ddxyxttyxtdd)dd1(ddtytyxdddd1222计算繁! tyyxddtytyyxdddd222 ,ln xt 则28,ddtD 记则由上述计算可知: yDyxyDyDyx 22, ), 3, 2(ddktDkkkyDD) 1(用归纳法可证 ykDDDyxkk) 1() 1()(于是欧拉方程 )(1) 1(11
17、)(xfypyxpyxpyxnnnnnn)(11tnnnefybyDbyD转化为常系数线性方程:)(dddd111tnnnnnefybtybty即29例例1. .ln2ln2222的通解求方程xxyyxyx 解解:,tex 令,ln xt 则,ddtD 记则原方程化为ttyyDyDD222) 1(2亦即ttytyty22dd3dd222其根,2, 121rr则对应的齐次方程的通解为特征方程, 0232 rrttyDD2)23(22即 tteCeCY22130 的通解为41ln21ln212221xxxCxCy4121212221tteCeCytt换回原变量, 得原方程通解为设特解:CtBtAy
18、2代入确定系数, 得4121212tty31例例2.22的通解求方程xxyxyy 解解: 将方程化为xyyxyx22 (欧拉方程欧拉方程) ,ddtD 记则方程化为,tex 令teyDDD2)1) 1(即teyDD2) 12(2特征根:, 121 rr设特解:,2 tetAy 代入 解得 A = 1,ttetetCCy221)(xxxxCC221ln)ln(所求通解为 32例例3.满足设函数)(xyy 1,ln5d)(321 xxttytyyxx,01xy且. )(xy求解解: 由题设得定解问题xyyxyx524 0) 1 (,0) 1 (yy,tex 令,ddtD 记则化为teyDDD54) 1(teyD5)4(2特征根: ,2ir设特解: ,teAy代入得 A1 33得通解为tetCtCy2sin2cos21xxCxC1)ln2sin()ln2cos(21利用初始条件得21, 121CC故所求特解为xxxy1)ln2sin(21)ln2cos(