1、14.3.4 纯滞后对象的控制算法 在工业生产的控制中,有许多控制对象含有较大的纯滞后特性。 被控对象的纯滞后时间使系统的稳定性降低,动态性能变坏,如容易引起超调和持续的振荡。 对象的纯滞后特性给控制器的设计带来困难。l 纯滞后补偿控制史密斯(Smith)预估器l 大林(Dahlin)算法24.3.4.1. 史密斯(Smith)预估器设被控对象传递函数为121/11/11211(1)(1)(1)( )(4.104)(1)(1)T TT TT TuT TeezezzCKCezzC,TNN是一个正整数史密斯预估器的原理:与史密斯预估器的原理:与D(s)D(s)并联一个补偿环节,用来补偿对象并联一个
2、补偿环节,用来补偿对象中的纯滞后环节。中的纯滞后环节。这个补偿环节叫做预估器。这个补偿环节叫做预估器。它的传递函数:它的传递函数:D(s)GP(s)e-se(t)u(t)y(t)r(t)-+GP(s)是G(s)中不含纯滞后特性的部分3/(1)/1/(1)/1/(1)/1(1)()1()1()()( 1)11( 1)()11( 1)11( 1)()TTNTTTTNTTTTNTTTTNzDzzGzezezezGzezzeezezGz由预估器与由预估器与D(s)D(s)组成总的补偿控制器(简称补偿器)组成总的补偿控制器(简称补偿器)增加补偿环节后的结构图经过补偿后的闭环传递函数经过补偿后的闭环传递函
3、数)()()(zUzGzY教材85页4.41有错误D(s)GP(s)e-se(t)u(t)y(t)r(t)-+GP(s)(1-e-s)-+yr(t)4经过补偿后的闭环系统,因其滞后特性经过补偿后的闭环系统,因其滞后特性e-s相当于已到了闭环相当于已到了闭环回路之外,它相当于下面的系统回路之外,它相当于下面的系统1( )( )Sss e它不影响系统的稳定性,只是将它不影响系统的稳定性,只是将y1(t)后移了一段时间。其控后移了一段时间。其控制性能相当于无滞后系统制性能相当于无滞后系统D(s)GP(s)e(t)u(t)y(t)r(t)-+e-sy1(t)0lim2TR A121212121.( )
4、(4.105)1.)ubzb zzaza z5具有纯滞后补偿的数字控制器其结构为如教材其结构为如教材85页图页图4.24.(1) 史密斯预估器 采样周期的选择 T=/N(2)史密斯预估器的结构GP(s)e-su(k)m(k)yr(k)m(k-N)-+)()()(zRzzY6D(S)还是用还是用PID控制算法,主要差别是:控制算法,主要差别是: 常规常规PID控制算法,它的控制器控制算法,它的控制器D(Z)的输入信号是误差)的输入信号是误差信号信号e(k) 带史密斯预估器时,带史密斯预估器时,D(Z)的输入信号为)的输入信号为e(k)减去预估器减去预估器的输出信号的输出信号yr(k) e2(k)
5、=e(k)-yr(k)教材教材85页页86页给出了较详细的描述。页给出了较详细的描述。注意一下公式注意一下公式4.46,带预估器的,带预估器的PID控制,控制,PID控制器的输入信控制器的输入信号是号是e2(k),而不是,而不是e(k).7 4.3.4.2. 大林(Dahlin)算法适用范围:被控对象具有大的纯滞后特性,这点与史密斯预估器控制算法相似。 对于具有较大纯滞后特性的控制对象,如果要求系统无对于具有较大纯滞后特性的控制对象,如果要求系统无超调量或超调量很小,并且允许有较长的调节时间,则大林超调量或超调量很小,并且允许有较长的调节时间,则大林算法的控制效果往往比算法的控制效果往往比PI
6、D等控制算法具有更好的效果。等控制算法具有更好的效果。8一般具有纯滞后特性的被控对象可以用带纯滞后的一阶或二一般具有纯滞后特性的被控对象可以用带纯滞后的一阶或二阶系统来描述。阶系统来描述。(1) 被控对象的描述l 被控对象如果可以用带有纯滞后环节被控对象如果可以用带有纯滞后环节e e-s-s的一阶来近似,则的一阶来近似,则其传递函数为:其传递函数为:1()(4.92)1sseT s /TTzel 如果可以用带滞后的二阶惯性环节来近似描述,即如果可以用带滞后的二阶惯性环节来近似描述,即其中:其中:K放大系数放大系数;纯滞后时间纯滞后时间 T1,T2 惯性时间常数惯性时间常数9(2)大林算法介绍
7、不论是对一阶惯性对象还是对二阶惯性对象,大林算法的设计目标都是:使闭环传递函数(s)相当于一个纯滞后环节和一个惯性环节的串联。 12/21T TT TT TCRAeeeC其中:其中: 闭环系统的纯滞后环节的滞后时间闭环系统的纯滞后环节的滞后时间与被控对象的纯滞后时与被控对象的纯滞后时间完全相同;间完全相同; 惯性时间常数为惯性时间常数为 T 按要求选择。按要求选择。这样就能保证使系统不产生超调,同时保证其稳定性。这样就能保证使系统不产生超调,同时保证其稳定性。10111/(1)/11( )114.951TssT TNT TeKeG zZsTseK zez() 采样周期选择采样周期选择(3) 大
8、林算法的离散化描述()1()1()()zDzzGz 对象的离散化对象的离散化l 一阶对象的离散化一阶对象的离散化 带零阶保持器对一阶对象进行离散化,得到广义对象的带零阶保持器对一阶对象进行离散化,得到广义对象的脉冲传递函数为脉冲传递函数为11l 二阶对象的离散化二阶对象的离散化带零阶保持器对二阶对象进行离散化,得到具有纯滞后特性的带零阶保持器对二阶对象进行离散化,得到具有纯滞后特性的二阶对象的脉冲传递函数为二阶对象的脉冲传递函数为11/(1)/11( )1T TNT TeGzK zez11/1/1( 1 )( 1)( 1)()(4 .9 6 ) 1) 1( 1)TTTTTTTTTTNee zD
9、 zK ee zez 式中系数式中系数12 闭环传递函数的离散化闭环传递函数的离散化前面已介绍过,大林算法的目的,是使闭环传函成为一个具有前面已介绍过,大林算法的目的,是使闭环传函成为一个具有纯滞后特性的一阶环惯性环节纯滞后特性的一阶环惯性环节12/1 , 2 , ,TTTTTTCCe e e同 样 ,可 以 预 先 求 出同样带零阶保持器用采样周期同样带零阶保持器用采样周期T对它进行离散化,其脉冲传对它进行离散化,其脉冲传递函数递函数() ()()( 4 .1 0 2 )uU z zR z 13 如果对象脉冲传递函数为如果对象脉冲传递函数为G(z)G(z),其闭环脉冲传递函数是,其闭环脉冲传
10、递函数是我们按性能要求构造的,就是前面得到的我们按性能要求构造的,就是前面得到的(z)(z)。这样我们就。这样我们就可以求出控制器可以求出控制器D(z)D(z)。( )( )( )1( )( )D z G zzD z G z我们需要求出我们需要求出D(z),完成控制器的设计,完成控制器的设计(4) 数字控制器设计数字控制器设计D(z)G(z)E(z)U(z)Y(z)R(z)-+111() () ()1( 1 ) .uU zR z z baz 将前面的将前面的(z)带入带入14() ()sPG sG se 所以,只要知道了被控对象,就可以由上式确定控制器,使所以,只要知道了被控对象,就可以由上式
11、确定控制器,使闭环系统满足我们的要求。闭环系统满足我们的要求。 将我们要求的闭环脉冲传函将我们要求的闭环脉冲传函(z)带入带入15 被控对象为带纯滞后的一阶惯性系统被控对象为带纯滞后的一阶惯性系统带入带入D(z)中,得到中,得到11111(1)RAbaab).)(.)(.().)(.()(111111z401z301z9801z701z301z9zD对象的脉冲传递函数对象的脉冲传递函数其中对于特定的对象,其中对于特定的对象,T1是确定不变的常数,是确定不变的常数,T是选定的常是选定的常数数,T是采样周期也是选定的常数,因此是采样周期也是选定的常数,因此1/,T TT Tee是一个常数系数,可以
12、预先计算出是一个常数系数,可以预先计算出,在控制程序中直接使用在控制程序中直接使用.16 被控对象为带纯滞后的二阶惯性系统被控对象为带纯滞后的二阶惯性系统12/11/11(1)12(1) (1) (1)( ) 1(1)T TT TT TT TT TNeezezD zKCCzezez对象的z传递函数为1111121111111()()()1()16. 2061( 10. 8187) ( 10. 6065)( 10. 7919) ( 10. 3680. 632)16. 2061( 10. 8187) ( 10. 6065)( 1) ( 10. 6321) ( 10. 7919)zDzGzzzzzz
13、zzzzzzzz将G(z)带入D(z)可以得到210.632()10.368zzz17(5)大林算法的主要步骤l 选取期望的闭环传递函数选取期望的闭环传递函数 l (z) (z) 由公式(由公式(4.934.93)。)。主要确定闭环惯性时主要确定闭环惯性时间常数间常数T, T, 滞后时间滞后时间 就是对象的滞后时间。就是对象的滞后时间。l 根据被控装置的传递函数计算广义脉冲传递函数根据被控装置的传递函数计算广义脉冲传递函数 G(z) 1G(z) 1阶对象由公式(阶对象由公式(4.954.95) 2 2阶对象由公式(阶对象由公式(4.974.97)l 计算数字控制器脉冲传递函数计算数字控制器脉冲
14、传递函数 D(Z)D(Z)1阶对象由公式(阶对象由公式(4.96) 2阶对象由公式(阶对象由公式(4.98)有了有了D(z),就可以得到,就可以得到u(k)表达式表达式就可以编写控制程序就可以编写控制程序18例已知被控装置的传递函数为例已知被控装置的传递函数为1111111116.2061(10.8187)(10.6065)( )(1)(10.6321 1)(10.79191)5.5414(10.8187)(10.6065)(1)zzzD zzzzzz试采用大林算法,确定数字控制器。试采用大林算法,确定数字控制器。解:采样周期为滞后时间解:采样周期为滞后时间即即 T=1s,(T=/N N=1)
15、,l 选取期望闭环传递函数为选取期望闭环传递函数为1)(sess12121(1)12/111( )(1)(1)()(4.97)(1)(1)sTsNT TT TKeeG zZsTsTsCCzK zezez离散化后的脉冲传递函数离散化后的脉冲传递函数19根据被控对象的脉冲传递函数、所选择的闭环脉冲传递函数,根据被控对象的脉冲传递函数、所选择的闭环脉冲传递函数,利用公式(利用公式(4.94)求)求D(z)被控装置广义脉冲传递函数被控装置广义脉冲传递函数)7919.01)(6321.01)(1()6065.01)(8187.01(2061.16)632.0368.01)(7919.01()6065.0
16、1)(8187.01(2061.16)(1)()(1)(111111211111zzzzzzzzzzzzzzzGzD()()()uzzGz将将G(z)带入得到带入得到20) (1)1 (1 )1 () (1) (1) () () 1(/1/) 1(z Gzezeezz Gzzz DNTTTTTTNccc可以求出可以求出y(kT) u(kT)该系统在单位阶跃输入输入时系统的输出该系统在单位阶跃输入输入时系统的输出y(kT) ,控制器的输控制器的输出出 u(kT) 的点所描绘出曲线。的点所描绘出曲线。211(),1spK eGsN TT s2212(),( 1 ) ( 1 )spK eG sN T
17、T s T s 23 u(kT) 以二倍采样周期大幅度摆动。以二倍采样周期大幅度摆动。 y(kT) 由于系统自身的惯性,不会这样大幅度摆动。由于系统自身的惯性,不会这样大幅度摆动。这种现象这种现象叫做振铃现象,简称振铃叫做振铃现象,简称振铃 这种现象对系统不利。这种现象对系统不利。24(6) 振铃现象及其消除 所谓振铃所谓振铃(Ringing)(Ringing)现象,是指数字控制器的输出以二分现象,是指数字控制器的输出以二分之一采样频率大幅度衰减的振荡。之一采样频率大幅度衰减的振荡。 振铃现象中的振荡是衰减的。振铃现象中的振荡是衰减的。 由于被控对象中惯性环节的低通特性,使得这种振荡对系由于被
18、控对象中惯性环节的低通特性,使得这种振荡对系统的输出影响较小。但是振铃现象却会增加执行机构的磨损,统的输出影响较小。但是振铃现象却会增加执行机构的磨损,在有交互作用的多参数控制系统中,振铃现象还有可能影响到在有交互作用的多参数控制系统中,振铃现象还有可能影响到系统的稳定性。系统的稳定性。 振铃现象与最小拍系统的纹波是不一样的振铃现象与最小拍系统的纹波是不一样的纹波是指输出在纹波是指输出在采样点上误差,而在采样点之间是有偏差的,输出有纹波。采样点上误差,而在采样点之间是有偏差的,输出有纹波。25 振铃现象的分析系统的输出Y(z)和数字控制器的输出U(z)间有下列关系1()()()1()()PPD
19、s GssDs GssesssG)12)(15(1)()6065. 01 )(8187. 01 ()7919. 01 (0398. 0) 12 )( 15 (1 ) (1111zzzzsseseZz GsTs由上面两式得到数字控制器的输出U(z)与输入函数的R(z)之间的关系为系统的输出Y(z)和输入函数R(z)之间有下列关系D(z)G(z)R(z)E(z)U(z)Y(z)-+26令).)(. (). (.)() (1111sTsz606501z818701z791901z039801s 2 1s 5ese 1Zz G11/1/1()(1) (1)()()(1) (1)TTTTuTTTTzee
20、zzGzKeez由上面两式得到数字控制器的输出U(z)与输入函数的R(z)之间的关系为u(z) 是分析振铃的基础。27对于单位阶跃输入函数对于阶跃输入,含有z=1的极点。 如果u(z)的极点在z平面的负实轴上,且与z=1点相近,那么数字控制器D(z)的输出序列u(k)中将含有这两种幅值相近的瞬态项,而且瞬态项的符号在不同时刻是不同的。 当两瞬态项符号相同时,数字控制器的输出控制作用加强,符号相反时,控制作用减弱,从而造成数字控制器的输出序列大幅度波动。 分析u(z)在z平面负实轴上的极点分布情况,就可分析振铃现象的有关情况。1z11zR)(28l 带纯滞后的一阶惯性环节带纯滞后的一阶惯性环节(
21、)()()1()()sPPDs GsseDs Gs1CC120T)(lim极点极点 它总是大于它总是大于0没有振铃现象没有振铃现象29l 带纯滞后的二阶惯性环节,将公式(带纯滞后的二阶惯性环节,将公式(4.104)写成一般形式)写成一般形式11111111119(10 . 3) (10 . 7)()(10 . 9 81 ) (10 . 3) (10 . 4)4 . 5 5(10 . 3) (10 . 7)(10 . 3) (10 . 4)zzzDzzzzzzzz121(1)12/11()( )(1) (1)NTTTTC C zGzK zezez 有两个极点有两个极点 Z1不会产生振铃现象,但不
22、会产生振铃现象,但1()(4 .9 2 )1sseTs 30 因此,因此,z2可能出现在可能出现在Z平面负实轴的单位圆上,或非常靠近平面负实轴的单位圆上,或非常靠近这一点。这一点。Z2会产生振铃现象。会产生振铃现象。31 振铃幅度RA用振铃幅度RA来衡量振铃强烈的程度。为描述振铃强烈的程度,应找出数字控制器输出量的最大值umax。 由于这一最大值与系统参数的关系难于用解析的式子描述出来,所以常用单位阶跃作用下数字控制器第0次输出量与第1次输出量的差值来衡量振铃现象强烈的程度。程度。振铃幅度定义:振铃幅度定义:控制器在单位阶跃输入作用下,第控制器在单位阶跃输入作用下,第0 0次输出次输出幅度与第
23、一次输出幅度的差。幅度与第一次输出幅度的差。 32对于前面讨论的带纯滞后的二阶惯性环节,将公式(对于前面讨论的带纯滞后的二阶惯性环节,将公式(4.1044.104)写成一般形式写成一般形式()()()()()(4 .4 1)1()()1()()sPPDs GsDs GsseDs GsDs GsRA为第为第0次输出与第一次输出之差次输出与第一次输出之差()()()(4 .4 2 )ry k mk mk NNoImage33经整理,带入公式经整理,带入公式4.104的系数的系数根据公式(根据公式(4.98)和()和(4.99)/2121T TCzezC NoImage *34 振铃现象的消除有两种
24、方法可用来消除振铃现象l 找出D(z)中引起振铃现象的因子(z=-1附近的极点),然后令其中的z=1。根据终值定理,这样处理不影响输出量的稳态值。例如:( )( )(4.40)1( )( )(1)sPD sD sD s Gse0.98这个极点: 用z=1带入35l 选择合适的采样周期选择合适的采样周期T及系统闭环时间常数及系统闭环时间常数TT,使得数,使得数字控制器的输出避免产生强烈的振铃现象字控制器的输出避免产生强烈的振铃现象实际上也是通过选择合适的实际上也是通过选择合适的T和和TT ,调整,调整D(z)的极点。的极点。)()()()(zGzzRzUZ=1带入36 振铃现象示例已知被控装置的
25、传递函数为1111111116.2061(10.8187)(10.6065)( )(1)(10.6321 1)(10.79191)5.5414(10.8187)(10.6065)(1)zzzD zzzzzzNoImage用大林算法确定的数字控制器为被控装置广义脉冲传递函数37 由于D(z)在z平面的左半平面有靠近z=-1的两个极点z=-0.6321,z=-0.7919对于单位阶跃输入数字控制器的输出将产生振铃现象。111/(1 )/11()114 .9 51T ssTTNTTeK eGzZsT seKzez()381(),1spK eGsN TT s3912(),( 1 ) ( 1 )spK
26、eG sN TT s T s 40 按消除振铃现象的第一种方法,令z=-0.6321和z=-0.7919两个极点项中的z=1。NoImage这时,将消除振铃现象。消除振铃现象后的y(kT)和u(kT)如下带入Z=141() ( 1 )sPGs e42121 221/1122 1( 1 / 1 / )/2122 111()( 4 .9 8 )1()TTTTTT TTTTTCT e T eTTCeT e T eTT 43 具有纯滞后系统的数字控制器直接设计的步骤l 根据系统的性能,确定闭环系统的参数Tc,给出振铃幅度RA的指标l 根据振铃幅度RA与采样周期T的关系,解出给定振铃幅度下对应的采样周期T,如果T有多解,则选择较大的采样周期l 确定纯滞后时间与采样周期之比的最大整数Nl 求广义对象的脉冲传递函数G(z)及闭环系统的脉冲传递函数(z)l 求数字控制器的脉冲传递函数D(z)