绝密考试结束前2021年硕士研究生招生考试试题科目代码及名称: 618 数学分析适用专业(方向):070100 数学请考生按规定用笔将所有试题的答案写在答题纸上,在此试题纸上答题无效一、 计算题(每小题6分,共36分)1. 求函数的导数2. 求极限3. 求多元函数的全微分4. 求不定积分5. 求级数的收敛域6. 求函数的极值二、解答与证明题(每小题6分,共36分)1. 设,证明:2. 证明:3. 设函数在闭区间上可微,且. 证明: 其中4. 若函数在无穷区间内可微,且. 证明:5. 讨论反常积分的敛散性6. 证明:函数列在区间内一致收敛,但三、证明题(本题12分)设函数在内连续,含参量反常积分在和时收敛. 证明:在上一致收敛.四、证明题(本题12分)设在上连续,对于区间中的每一个点,总存在,使得. 证明:至少存在一点,使得.五、计算题(本题12分)求三重积分,其中是由抛物面和所围成的区域.六、计算题(本题12分)求积分,其中为曲线所围区域.七、证明题(本题15分)证明:级数八、计算题(本题15分)求第二型曲面积分其中是由及三个坐标平面围成的立体在第一卦限的部分的表面,并取外侧。第 3 页 共 3 页