1、中考数学专题复习第二十六讲 平移、旋转与对称【基础知识回顾】一、 轴对称与轴对称图形: 1、轴对称:把一个图 形沿着某一条直线翻折过去,如果它能够与另一个图形 那么就这说两个图形成轴对称,这条直线叫 2、轴对称图形:如果把一个图形沿着某条直线对折,直线两旁的部分能够互相 那么这个图形叫做轴对称图形3、轴对称性质:关于某条直线对称的两个图形 对应点连接被对称轴 【赵老师提醒:1、轴对称是指 个图形的位置关系,而轴对称图形是指 各具有特殊形状的图形2、对称轴是 而不是线段,轴对称图形的对称轴不一定只有一条】二、图形的平移与旋转: 1、平移:定义:在平面内,把某个图形沿着某个 移动一定的 这样的图形
2、运动称为平移性质:平移不改变图形的 与 ,即平移前后的图形 平移前后的图形对应点连得线段平行且 【赵老师提醒:平移作图的关键是确定平移的 和 】2、旋转:定义:在平面内,将一个图形绕一个定点沿某个方向旋转一个 ,这样的图形运动称为旋转,这个点称为 转动的 称为旋转角旋转的性质:旋转前后的图形 :旋转前后的两个圆形中,对应点到旋转中心的距离都 ,每对对应点与旋转中心的连线所成的角度都是旋转角旋转角都 【赵老师提醒:1、旋转作用的关键是确定 、 和 ,2、一个图形旋转一定角度后如果能与自身重合,那么这个图形就是旋转对称图形】三、中心对称与中心对称图形:1、中心对称:在平面内,一个图形绕某一点旋转1
3、800能与自身重合它能与另一个图形 就说这两个图形关于这个点成中心对称,这个点叫做 2、中心对称图形:一个图形绕着某点旋转 后能与自身重合,这种图形叫中心对称图形,这个点叫做 3、性质:在中心对称的两个图形中,对称点的连线都经过 且被 平分【赵老师提醒:1、中心对称是指一个图形的位置关系,而中心对称图形是指一个具有特殊形状的图形2、常见的轴对称图形有 、 、 、 、 、 等,常见的中心对称图形有 、 、 、 、 、 等3、所有的正n边形都是 对称圆形里有四条对称轴,边数为偶数的正多边形,又是 对称图形4、注意圆形的各种变换在平面直角坐标系中的运用】【典型例题解析】 考点一:轴对称图形例1 (2
4、012柳州)娜娜有一个问题请教你,下列图形中对称轴只有两条的是()AB CD圆 等边三角形 矩形 等腰梯形考点:轴对称图形分析:根据轴对称图形的概念,分别判断出四个图形的对称轴的条数即可解答:解:A、圆有无数条对称轴,故本选项错误;B、等边三角形有3条对称轴,故本选项错误;C、矩形有2条对称轴,故本选项正确;D、等腰梯形有1条对称轴,故本选项错误故选C点评:本题考查轴对称图形的概念,解题关键是能够根据轴对称图形的概念正确找出各个图形的对称轴的条数,属于基础题例2 (2012成都)如图,在平面直角坐标系xOy中,点P(-3,5)关于y轴的对称点的坐标为()A(-3,-5)B(3,5)C(3-5)
5、D(5,-3)考点:关于x轴、y轴对称的点的坐标分析:根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答解答:解:点P(-3,5)关于y轴的对称点的坐标为(3,5)故选B点评:本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数对应训练1. (2012宁波)下列交通标志图案是轴对称图形的是()ABCD考点:轴对称图形专题:常规题型分析:根据轴对称图形的概念对各选项分析判断后利用排除法求解解答:解:A、不是轴
6、对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误故选B点评:本题考查了轴对称图形,掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合2(2012沈阳)在平面直角坐标系中,点P(-1,2)关于x轴的对称点的坐标为()A(-1,-2)B(1,-2)C(2,-1)D(-2,1)考点:关于x轴、y轴对称的点的坐标分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答解答:解:点P(-1,2)关于x轴的对称点的坐标为(-1,-2)故选A点评:本题考查了关于x轴、y轴对称的点的坐标
7、,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数考点二:最短路线问题例3 (2012黔西南州)如图,抛物线y= x2+bx-2与x轴交于A、B两点,与y交于C点,且A(-1,0),点M(m,0)是x轴上的一个动点,当MC+MD的值最小时,m的值是()ABCD考点:轴对称-最短路线问题;二次函数的性质;相似三角形的判定与性质分析:首先可求得二次函数的顶点坐标,再求得C关于x轴的对称点C,求得直线CD的解析式,与x轴的交点的横坐标即是m的值解答:解
8、:点A(-1,0)在抛物线y=x2+bx-2上,(-1)2+b(-1)-2=0,b=-,抛物线的解析式为y=x2-x-2,顶点D的坐标为(,-),作出点C关于x轴的对称点C,则C(0,2),OC=2连接CD交x轴于点M,根据轴对称性及两点之间线段最短可知,MC+MD的值最小设抛物线的对称轴交x轴于点EEDy轴,OCM=EDM,COM=DEMCOMDEM,即,m=故选B点评:本题着重考查了待定系数法求二次函数解析式,轴对称性质以及相似三角形的性质,关键在于求出函数表达式,作出辅助线,找对相似三角形对应训练3. (2012贵港)如图,MN为O的直径,A、B是O上的两点,过A作ACMN于点C,过B作
9、BDMN于点D,P为DC上的任意一点,若MN=20,AC=8,BD=6,则PA+PB的最小值是 考点:轴对称-最短路线问题;勾股定理;垂径定理专题:探究型分析:先由MN=20求出O的半径,再连接OA、OB,由勾股定理得出OD、OC的长,作点B关于MN的对称点B,连接AB,则AB即为PA+PB的最小值,BD=BD=6,过点B作AC的垂线,交AC的延长线于点E,在RtABE中利用勾股定理即可求出AB的值解答:解:MN=20,O的半径=10,连接OA、OB,在RtOBD中,OB=10,BD=6,OD=8;同理,在RtAOC中,OA=10,AC=8,OC=6,CD=8+6=14,作点B关于MN的对称点
10、B,连接AB,则AB即为PA+PB的最小值,BD=BD=6,过点B作AC的垂线,交AC的延长线于点E,在RtABE中,AE=AC+CE=8+6=14,BE=CD=14,AB=故答案为:点评:本题考查的是轴对称-最短路线问题、垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键考点二:中心对称图形例4 (2012襄阳)下列图形中,是中心对称图形,但不是轴对称图形的是()ABCD考点:中心对称图形;轴对称图形分析:依据轴对称图形与中心对称的概念即可解答解答:解:B选项是轴对称也是中心对称图形,C、D选项是轴对称但不是中心对称图形,A选项只是中心对称图形但不是轴
11、对称图形故选A点评:对轴对称与中心对称概念的考查:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴如果一个图形绕某一点旋转180后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心对应训练4(2012株洲)下列图形中,既是轴对称图形又是中心对称图形的是()ABCD考点:中心对称图形;轴对称图形分析:根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案解答:解:A、此图形不是中心对称图
12、形,是轴对称图形,故此选项错误;B、此图形不是中心对称图形,也不是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项正确;D、此图形是中心对称图形,不是轴对称图形,故此选项错误故选C点评:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴 考点二:平移旋转的性质例5 (2012义乌市)如图,将周长为8的ABC沿BC方向平移1个单位得到DEF,则四边形ABFD的周长为()A6B8C10D12考点:平移的性质分析:根据平移的基本性质,得出四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC即可得出答案解答:解:根据题意,将周长为8
13、个单位的等边ABC沿边BC向右平移1个单位得到DEF,AD=1,BF=BC+CF=BC+1,DF=AC;又AB+BC+AC=8,四边形ABFD的周长=AD+AB+BF+DF=1+AB+BC+1+AC=10故选;C点评:本题考查平移的基本性质:平移不改变图形的形状和大小;经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等得到CF=AD,DF=AC是解题的关键例6 (2012十堰)如图,O是正ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60得到线段BO,下列结论:BOA可以由BOC绕点B逆时针旋转60得到;点O与O的距离为4;AOB=150;S
14、四边形AOBO=6+3;SAOC+SAOB=6+其中正确的结论是()ABCD考点:旋转的性质;全等三角形的判定与性质;等边三角形的判定与性质;勾股定理的逆定理分析:证明BOABOC,又OBO=60,所以BOA可以由BOC绕点B逆时针旋转60得到,故结论正确;由OBO是等边三角形,可知结论正确;在AOO中,三边长为3,4,5,这是一组勾股数,故AOO是直角三角形;进而求得AOB=150,故结论正确;S四边形AOBO=SAOO+SOBO=6+4,故结论错误;如图,将AOB绕点A逆时针旋转60,使得AB与AC重合,点O旋转至O点利用旋转变换构造等边三角形与直角三角形,将SAOC+SAOB转化为SCO
15、O+SAOO,计算可得结论正确解答:解:由题意可知,1+2=3+2=60,1=3,又OB=OB,AB=BC,BOABOC,又OBO=60,BOA可以由BOC绕点B逆时针旋转60得到,故结论正确;如图,连接OO,OB=OB,且OBO=60,OBO是等边三角形,OO=OB=4故结论正确;BOABOC,OA=5在AOO中,三边长为3,4,5,这是一组勾股数,AOO是直角三角形,AOO=90,AOB=AOO+BOO=90+60=150,故结论正确;S四边形AOBO=SAOO+SOBO=34+42=6+4,故结论错误;如图所示,将AOB绕点A逆时针旋转60,使得AB与AC重合,点O旋转至O点易知AOO是
16、边长为3的等边三角形,COO是边长为3、4、5的直角三角形,则SAOC+SAOB=S四边形AOCO=SCOO+SAOO=34+32=6+,故结论正确综上所述,正确的结论为:故选A点评:本题考查了旋转变换中等边三角形,直角三角形的性质利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点在判定结论时,将AOB向不同方向旋转,体现了结论-结论解题思路的拓展应用对应训练5.(2012莆田)如图,ABC是由ABC沿射线AC方向平移2cm得到,若AC=3cm,则AC= 1cm考点:平移的性质分析:先根据平移的性质得出AA=2cm,再利用AC=3cm,即可求出AC的长解答:解
17、:将ABC沿射线AC方向平移2cm得到ABC,AA=2cm,又AC=3cm,AC=AC-AA=1cm故答案为:1点评:本题主要考查对平移的性质的理解和掌握,能熟练地运用平移的性质进行推理是解此题的关键6(2012南通)如图RtABC中,ACB=90,B=30,AC=1,且AC在直线l上,将ABC绕点A顺时针旋转到,可得到点P1,此时AP1=2;将位置的三角形绕点P1顺时针旋转到位置,可得到点P2,此时AP2=2+ ;将位置的三角形绕点P2顺时针旋转到位置,可得到点P3,此时AP3=3+ ;按此规律继续旋转,直到点P2012为止,则AP2012等于()A2011+671B2012+671C201
18、3+671D2014+671考点:旋转的性质专题:规律型分析:仔细审题,发现将RtABC绕点A顺时针旋转,每旋转一次,AP的长度依次增加2,1,且三次一循环,按此规律即可求解解答:解:RtABC中,ACB=90,B=30,AC=1,AB=2,BC=,将ABC绕点A顺时针旋转到,可得到点P1,此时AP1=2;将位置的三角形绕点P1顺时针旋转到位置,可得到点P2,此时AP2=2+;将位置的三角形绕点P2顺时针旋转到位置,可得到点P3,此时AP3=2+1=3+;又20123=6702,AP2012=670(3+)+2+=2012+671故选B点评:本题考查了旋转的性质及直角三角形的性质,得到AP的长
19、度依次增加2,1,且三次一循环是解题的关键 考点四:图形的折叠例7 (2012遵义)如图,矩形ABCD中,E是AD的中点,将ABE沿BE折叠后得到GBE,延长BG交CD于F点,若CF=1,FD=2,则BC的长为()A 3B2C2D2考点:翻折变换(折叠问题)。810360 分析:首先过点E作EMBC于M,交BF于N,易证得ENGBNM(AAS),MN是BCF的中位线,根据全等三角形的性质,即可求得GN=MN,由折叠的性质,可得BG=3,继而求得BF的值,又由勾股定理,即可求得BC的长解答:解:过点E作EMBC于M,交BF于N,四边形ABCD是矩形,A=ABC=90,AD=BC,EMB=90,四
20、边形ABME是矩形,AE=BM,由折叠的性质得:AE=GE,EGN=A=90,EG=BM,ENG=BNM,ENGBNM(AAS),NG=NM,CM=DE,E是AD的中点,AE=ED=BM=CM,EMCD,BN:NF=BM:CM,BN=NF,NM=CF=,NG=,BG=AB=CD=CF+DF=3,BN=BGNG=3=,BF=2BN=5,BC=2故选B点评:此题考查了矩形的判定与性质、折叠的性质、三角形中位线的性质以及全等三角形的判定与性质此题难度适中,注意辅助线的作法,注意数形结合思想的应用例8 (2012天津)已知一个矩形纸片OACB,将该纸片放置在平面直角坐标洗中,点A(11,0),点B(0
21、,6),点P为BC边上的动点(点P不与点B、C重合),经过点O、P折叠该纸片,得点B和折痕OP设BP=t()如图,当BOP=30时,求点P的坐标;()如图,经过点P再次折叠纸片,使点C落在直线PB上,得点C和折痕PQ,若AQ=m,试用含有t的式子表示m;()在()的条件下,当点C恰好落在边OA上时,求点P的坐标(直接写出结果即可)考点:翻折变换(折叠问题);坐标与图形性质;全等三角形的判定与性质;勾股定理;相似三角形的判定与性质专题:几何综合题分析:()根据题意得,OBP=90,OB=6,在RtOBP中,由BOP=30,BP=t,得OP=2t,然后利用勾股定理,即可得方程,解此方程即可求得答案
22、;()由OBP、QCP分别是由OBP、QCP折叠得到的,可知OBPOBP,QCPQCP,易证得OBPPCQ,然后由相似三角形的对应边成比例,即可求得答案;()首先过点P作PEOA于E,易证得PCECQA,由勾股定理可求得CQ的长,然后利用相似三角形的对应边成比例与m= t2- t+6,即可求得t的值解答:解:()根据题意,OBP=90,OB=6,在RtOBP中,由BOP=30,BP=t,得OP=2tOP2=OB2+BP2,即(2t)2=62+t2,解得:t1=2,t2=-2(舍去)点P的坐标为(2,6)()OBP、QCP分别是由OBP、QCP折叠得到的,OBPOBP,QCPQCP,OPB=OP
23、B,QPC=QPC,OPB+OPB+QPC+QPC=180,OPB+QPC=90,BOP+OPB=90,BOP=CPQ又OBP=C=90,OBPPCQ,由题意设BP=t,AQ=m,BC=11,AC=6,则PC=11-t,CQ=6-mm= t2- t+6(0t11)()过点P作PEOA于E,PEA=QAC=90,PCE+EPC=90,PCE+QCA=90,EPC=QCA,PCECQA,PC=PC=11-t,PE=OB=6,AQ=m,CQ=CQ=6-m,AC=,m= t2- t+6,解得:t1=,t2=,点P的坐标为(,6)或(,6)点评:此题考查了折叠的性质、矩形的性质以及相似三角形的判定与性质
24、等知识此题难度较大,注意掌握折叠前后图形的对应关系,注意数形结合思想与方程思想的应用对应训练7(2012资阳)如图,在ABC中,C=90,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MNAB,MC=6,NC=,则四边形MABN的面积是()ABCD考点:翻折变换(折叠问题)。810360 分析:首先连接CD,交MN于E,由将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,即可得MNCD,且CE=DE,又由MNAB,易得CMNCAB,根据相似三角形的面积比等于相似比的平方,相似三角形对应高的比等于相似比,即可得,又由MC=6,NC=,即可求得四边形MABN的面积解答:解:
25、连接CD,交MN于E,将ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,MNCD,且CE=DE,CD=2CE,MNAB,CDAB,CMNCAB,在CMN中,C=90,MC=6,NC=,SCMN=CMCN=62=6,SCAB=4SCMN=46=24,S四边形MABN=SCABSCMN=246=18故选C点评:此题考查了折叠的性质、相似三角形的判定与性质以及直角三角形的性质此题难度适中,解此题的关键是注意折叠中的对应关系,注意数形结合思想的应用8(2012深圳)如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE,(1)求证:四边形AFCE为
26、菱形;(2)设AE=a,ED=b,DC=c请写出一个a、b、c三者之间的数量关系式考点:翻折变换(折叠问题);全等三角形的判定与性质;菱形的判定分析:(1)由矩形ABCD与折叠的性质,易证得CEF是等腰三角形,即CE=CF,即可证得AF=CF=CE=AE,即可得四边形AFCE为菱形;(2)由折叠的性质,可得CE=AE=a,在RtDCE中,利用勾股定理即可求得:a、b、c三者之间的数量关系式为:a2=b2+c2解答:(1)证明:四边形ABCD是矩形,ADBC,AEF=EFC,由折叠的性质,可得:AEF=CEF,AE=CE,AF=CF,EFC=CEF,CF=CE,AF=CF=CE=AE,四边形AF
27、CE为菱形;(2)a、b、c三者之间的数量关系式为:a2=b2+c2理由:由折叠的性质,得:CE=AE,四边形ABCD是矩形,D=90,AE=a,ED=b,DC=c,CE=AE=a,在RtDCE中,CE2=CD2+DE2,a、b、c三者之间的数量关系式为:a2=b2+c2点评:此题考查了矩形的性质、折叠的性质、菱形的判定以及勾股定理等知识此题难度适中,注意掌握数形结合思想的应用,注意折叠中的对应关系考点五:简单的图形变换作用例9 (2012广州)如图,P的圆心为P(-3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方(1)在图中作出P关于y轴对称的P根据作图直接写出P与
28、直线MN的位置关系(2)若点N在(1)中的P上,求PN的长考点:作图-轴对称变换;直线与圆的位置关系专题:作图题分析:(1)根据关于y轴对称的点的横坐标互为相反数,纵坐标相等找出点P的位置,然后以3为半径画圆即可;再根据直线与圆的位置关系解答;(2)设直线PP与MN相交于点A,在RtAPN中,利用勾股定理求出AN的长度,在RtAPN中,利用勾股定理列式计算即可求出PN的长度解答:解:(1)如图所示,P即为所求作的圆,P与直线MN相交;(2)设直线PP与MN相交于点A,在RtAPN中,AN=,在RtAPN中,PN=点评:本题考查了利用轴对称变换作图,直线与圆的位置关系,勾股定理的应用,熟练掌握网
29、格结构,准确找出点P的位置是解题的关键对应训练9(2012凉山州)如图,梯形ABCD是直角梯形(1)直接写出点A、B、C、D的坐标;(2)画出直角梯形ABCD关于y轴的对称图形,使它与梯形ABCD构成一个等腰梯形(3)将(2)中的等腰梯形向上平移四个单位长度,画出平移后的图形(不要求写作法)考点:作图-轴对称变换;直角梯形;等腰梯形的性质;作图-平移变换分析:(1)根据A,B,C,D,位置得出点A、B、C、D的坐标即可;(2)首先求出A,B两点关于y轴对称点,在坐标系中找出,连接各点,即可得出图象,(3)将对应点分别向上移动4个单位,即可得出图象解答:解:(1)如图所示:根据A,B,C,D,位
30、置得出点A、B、C、D的坐标分别为:(-2,-1),(-4,-4),(0,-4),(0,-1);(2)根据A,B两点关于y轴对称点分别为:A(2,-1),(4,-4),在坐标系中找出,连接各点,即可得出图象,如图所示;(3)将对应点分别向上移动4个单位,即可得出图象,如图所示点评:此题主要考查了图形的平移和作轴对称图形,根据已知得出对应点的坐标是解题关键【聚焦山东中考】1(2012烟台)如图,所给图形中是中心对称图形但不是轴对称图形的是()ABCD考点:中心对称图形;轴对称图形分析:根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫
31、做对称轴;把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进行分析可以选出答案解答:解:A、不是轴对称图形,也不是中心对称图形故本选项错误;B、是轴对称图形,也是中心对称图形故本选项错误;C、不是轴对称图形,是中心对称图形故本选项正确;D、是轴对称图形,不是中心对称图形故本选项错误故选C点评:此题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合2. (2012潍坊)甲乙两位同学用围棋子做游戏如图所示,现轮到黑
32、棋下子,黑棋下一子后白棋再下一子,使黑棋的5个棋子组成轴对称图形,白棋的5个棋子也成轴对称图形则下列下子方法不正确的是(),说明:棋子的位置用数对表示,如A点在(6,3)A黑(3,7);白(5,3)B黑(4,7);白(6,2)C黑(2,7);白(5,3)D黑(3,7);白(2,6)考点:利用轴对称设计图案分析:分别根据选项所说的黑、白棋子放入图形,再由轴对称的定义进行判断即可得出答案解答:解:A、若放入黑(3,7);白(5,3),则此时黑棋是轴对称图形,白旗也是轴对称图形,故本选项错误;B、若放入黑(4,7);白(6,2),则此时黑棋是轴对称图形,白旗也是轴对称图形,故本选项错误;C、若放入黑
33、(2,7);白(5,3),则此时黑棋不是轴对称图形,白旗是轴对称图形,故本选项正确;D、若放入黑(3,7);白(6,2),则此时黑棋是轴对称图形,白旗也是轴对称图形,故本选项错误;故选C点评:此题考查了轴对称图形的定义,属于基础题,注意将选项各棋子的位置放入,检验是否为轴对称图形,有一定难度,注意细心判断3(2012泰安)如图,将矩形纸片ABCD沿EF折叠,使点B与CD的中点重合,若AB=2,BC=3,则FCB与BDG的面积之比为()A 9:4B3:2C4:3D16:9考点:翻折变换(折叠问题)。810360 专题:数形结合。分析:设BF=x,则CF=3x,BF=x,在RtBCF中,利用勾股定
34、理求出x的值,继而判断DBGCFB,根据面积比等于相似比的平方即可得出答案解答:解:设BF=x,则CF=3x,BF=x,又点B为CD的中点,BC=1,在RtBCF中,BF2=BC2+CF2,即x2=1+(3x)2,解得:x=,即可得CF=3=,DBG+DGB=90,DBG+CBF=90,DGB=CBF,RtDBGRtCFB,根据面积比等于相似比的平方可得:=故选D点评:此题考查了翻折变换的知识,解答本题的关键是求出FC的长度,然后利用面积比等于相似比的平方进行求解,难度一般4(2012济宁)如图,将矩形ABCD的四个角向内折起,恰好拼成一个无缝隙无重叠的四边形EFGH,EH=12厘米,EF=1
35、6厘米,则边AD的长是()A 12厘米B16厘米C20厘米D28厘米考点:翻折变换(折叠问题);勾股定理。810360 分析:先求出EFH是直角三角形,再根据勾股定理求出FH=20,再利用全等三角形的性质解答即可解答:解:设斜线上两个点分别为P、Q,P点是B点对折过去的,EPH为直角,AEHPEH,HEA=PEH,同理PEF=BEF,这四个角互补,PEH+PEF=90,四边形EFGH是矩形,DHGBFE,HEF是直角三角形,BF=DH=PF,AH=HP,AD=HF,EH=12cm,EF=16cm,FH=20cm,FH=AD=20cm故选C点评:本题考查的是翻折变换及勾股定理、全等三角形的判定与
36、性质,解答此题的关键是作出辅助线,构造出全等三角形,再根据直角三角形及全等三角形的性质解答5(2012德州)在四边形ABCD中,AB=CD,要使四边形ABCD是中心对称图形,只需添加一个条件,这个条件可以是 不唯一,可以是:ABCD或AD=BC,B+C=180,A+D=180等(只要填写一种情况)考点:中心对称图形专题:开放型分析:根据平行四边形是中心对称图形,可以针对平行四边形的各种判定方法,给出相应的条件,得出此四边形是中心对称图形解答:解:AB=CD,当AD=BC,(两组对边分别相等的四边形是平行四边形)或ABCD(一组对边平行且相等的四边形是平行四边形)时,或B+C=180或A+D=1
37、80等时,四边形ABCD是平行四边形故此时是中心对称图象,故答案为:AD=BC或ABCD或B+C=180或A+D=180等点评:本题考查了中心对称图形的定义和平行四边形的判定,平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形6(2012日照)如图1,正方形OCDE的边长为1,阴影部分的面积记作S1;如图2,最大圆半径r=1,阴影部分的面积记作S2,则S1 S2(用“”、“”或“=”填空)考点:轴
38、对称的性质;实数大小比较;正方形的性质分析:结合图形发现:图1阴影部分的面积等于等于矩形ACDF的面积,首先利用勾股定理算出OD的长,进而得到OA的长,再算出AC的长,即可表示出矩形ACDF的面积;图2每个阴影部分正好是它所在的圆的四分之一,则阴影部分的面积大圆面积的是 ,计算出结果后再比较S1与S2的大小即可解答:解:OE=1,由勾股定理得OD=,AO=,AC=AO-CO=-1,S阴影=S矩形=(-1)1=-1,大圆面积=r2=阴影部分面积=-1,S1S2,故答案为:点评:此题主要考查了轴对称图形的性质以及正方形性质,根据已知得出AC=AO-CO= -1,进而得出矩形DCAF的面积是解题关键
39、7(2012临沂)如图,CD与BE互相垂直平分,ADDB,BDE=70,则CAD= 70考点:轴对称的性质;平行线的判定与性质专题:常规题型分析:先证明四边形BDEC是菱形,然后求出ABD的度数,再利用三角形内角和等于180求出BAD的度数,然后根据轴对称性可得BAC=BAD,然后求解即可解答:解:CD与BE互相垂直平分,四边形BDEC是菱形,DB=DE,BDE=70,ABD=55,ADDB,BAD=90-55=35,根据轴对称性,四边形ACBD关于直线AB成轴对称,BAC=BAD=35,CAD=BAC+BAD=35+35=70故答案为:70点评:本题考查了轴对称的性质,三角形的内角和定理,判
40、断出四边形BDEC是菱形并得到该图象关于直线AB成轴对称是解题的关键8(2012菏泽)(1)如图1,DAB=CAE,请补充一个条件: D=B或AED=C,使ABCADE(2)如图2,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标考点:翻折变换(折叠问题);坐标与图形性质;勾股定理;相似三角形的判定专题:探究型分析:(1)根据相似三角形的判定定理再补充一个相等的角即可;(2)先根据勾股定理求出BE的长,进而可得出CE的长,求出E点坐标,在R
41、tDCE中,由DE=OD及勾股定理可求出OD的长,进而得出D点坐标解答:解:(1)D=B或AED=C(2)依题意可知,折痕AD是四边形OAED的对称轴,在RtABE中,AE=AO=10,AB=8,BE=6,CE=4,E(4,8)在RtDCE中,DC2+CE2=DE2,又DE=OD,(8-OD)2+42=OD2,OD=5,D(0,5)点评:本题考查的是图形的翻折变换、勾股定理及相似三角形的判定,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键9(2012青岛)如图,RtABC中,ACB=90,ABC=30,AC=1,将ABC绕点C逆时针旋转至ABC,使得点A恰好落在AB上,连接BB,则BB