1、 20世纪下半叶以来,数学最大的变化和发展是应用,数学世纪下半叶以来,数学最大的变化和发展是应用,数学几乎渗透到了所有学科领域。为了适应数学发展的潮流和未来几乎渗透到了所有学科领域。为了适应数学发展的潮流和未来社会人才培养的需要,美国、德国、日本等发达国家都十分重社会人才培养的需要,美国、德国、日本等发达国家都十分重视数学建模教学。增加数学和其他科学,以及日常生活的联系视数学建模教学。增加数学和其他科学,以及日常生活的联系是世界数学教育的总趋势。我们在开展数学建模教学活动中很是世界数学教育的总趋势。我们在开展数学建模教学活动中很重视选用与物理、化学、生物、美学等知识相结合的跨学科问重视选用与物
2、理、化学、生物、美学等知识相结合的跨学科问题以及大量与日常生活相联系题以及大量与日常生活相联系(如投资买卖、银行储蓄、测量、如投资买卖、银行储蓄、测量、乘车、运动等方面乘车、运动等方面)的数学问题,参加数学建模小组的学生都认的数学问题,参加数学建模小组的学生都认为用数学知识解决实际问题比做纯数学题更有兴趣,他们认为为用数学知识解决实际问题比做纯数学题更有兴趣,他们认为学科之间是不分界的,数学就是生活,生活离不开数学,数学学科之间是不分界的,数学就是生活,生活离不开数学,数学也不能和生活分离。也不能和生活分离。“时时有数学,事事有数学时时有数学,事事有数学”。从以下五点阐述从以下五点阐述:一、什
3、么是数学建模?一、什么是数学建模?二、初中数学建模教学的基本理念和教学环节二、初中数学建模教学的基本理念和教学环节三、选择适当的数学问题,渗透数学建模思想三、选择适当的数学问题,渗透数学建模思想四、初中数学建模教学的意义四、初中数学建模教学的意义五、有关开展初中数学建模教学的几点建议五、有关开展初中数学建模教学的几点建议一、什么是数学建模?一、什么是数学建模?l实际问题是复杂多变的,数学建模需要较多的探索性和创实际问题是复杂多变的,数学建模需要较多的探索性和创造性,为适应造性,为适应21世纪数学课程改革,应加强应用性与创新世纪数学课程改革,应加强应用性与创新性,应重视联系学生生活实际和社会实践
4、的要求,我们开性,应重视联系学生生活实际和社会实践的要求,我们开展了中学数学建模教学与应用的研究和实践,目的是培养展了中学数学建模教学与应用的研究和实践,目的是培养学生的创造能力和应用能力,把学生从纯理论解题的题海学生的创造能力和应用能力,把学生从纯理论解题的题海中解放出来,把学生应用数学的意识的培养贯穿于教学的中解放出来,把学生应用数学的意识的培养贯穿于教学的始终,让学生学得生动活泼,使数学素质教育跃上一个新始终,让学生学得生动活泼,使数学素质教育跃上一个新的高度。的高度。所谓数学建模就是把所要研究的实验问题,通过数所谓数学建模就是把所要研究的实验问题,通过数学抽象构造出相应的数学模型,再通
5、过数学模型的研学抽象构造出相应的数学模型,再通过数学模型的研究,使原问题获得解决的过程。其基本思路是:究,使原问题获得解决的过程。其基本思路是:二、初中数学建模教学的基本理念和二、初中数学建模教学的基本理念和 教学环节教学环节1、中学数学建模教学的基本理念、中学数学建模教学的基本理念(1) 使学生体会数学与自然及人类社会的密切联系,体使学生体会数学与自然及人类社会的密切联系,体会数学的应用价值,培养数学的应用意识,增进对数学的会数学的应用价值,培养数学的应用意识,增进对数学的理解和应用数学的信心。理解和应用数学的信心。 (2)学会运用数学的思维方式去观察、分析现实社会,)学会运用数学的思维方式
6、去观察、分析现实社会,去解决日常生活中的问题,进而形成勇于探索、勇于创新去解决日常生活中的问题,进而形成勇于探索、勇于创新的科学精神。的科学精神。(3)以数学建模为手段,激发学生学习数学的积极性,学)以数学建模为手段,激发学生学习数学的积极性,学会团结协作,建立良好人际关系、相互合作的工作能力。会团结协作,建立良好人际关系、相互合作的工作能力。(4)以数学建模方法为载体,使学生获得适应未来社会生)以数学建模方法为载体,使学生获得适应未来社会生活和进一步发展所必需的重要数学事实(包括数学知识、活和进一步发展所必需的重要数学事实(包括数学知识、数学活动经验)以及基本的思想方法和必要的应用技能。数学
7、活动经验)以及基本的思想方法和必要的应用技能。2、贯彻应用意识的课堂教学环节、贯彻应用意识的课堂教学环节 五个基本环节是:五个基本环节是:创设问题情景,激发求知欲创设问题情景,激发求知欲抽象概括,建立模型,导入学习课题抽象概括,建立模型,导入学习课题研究模型,形成数学知识研究模型,形成数学知识解决实际应用问题,享受成功喜悦解决实际应用问题,享受成功喜悦归纳总结,深化目标归纳总结,深化目标三、选择适当的数学问题,渗透数学三、选择适当的数学问题,渗透数学 建模思想建模思想4.以活动为手段,培养建模能力以活动为手段,培养建模能力1.从课本中的数学出发,注重对课本原题的改变从课本中的数学出发,注重对课
8、本原题的改变2.从生活中的数学问题出发,强化应用意识从生活中的数学问题出发,强化应用意识3.以社会热点问题出发,介绍建模方法以社会热点问题出发,介绍建模方法例例1:如图,三个相同的正方形,:如图,三个相同的正方形,求证:求证:12390。基本图形:证明:证明:先证先证ACDBAD,可得可得1=CAD ,由由AFBE 可得可得2=FAC,所以所以1+2=FAD=3=45所以所以1+2+3=90以此问题为原型,可编拟如下一道应用问题:在距电以此问题为原型,可编拟如下一道应用问题:在距电视塔底部视塔底部100米,米,200米,米,300米的三处,观察电视塔米的三处,观察电视塔顶,测得的仰角之和为顶,
9、测得的仰角之和为90,那么电视塔高为多少?,那么电视塔高为多少?模型应用模型应用 只要有课本题的基础,就一定得出电视塔高为只要有课本题的基础,就一定得出电视塔高为100米,米,否则三个仰角之和要么大于否则三个仰角之和要么大于90,要么小于,要么小于90。例例2、条件:如图,条件:如图,A、B是直线同旁的两个定点。是直线同旁的两个定点。问题:在直线上确定一点问题:在直线上确定一点P,使,使PA+PB的值最小。的值最小。方法:作点方法:作点A关于直线的对称点关于直线的对称点A,连结,连结AB交于点交于点P,则则PA+PB=AB的值最小(不必证明)。的值最小(不必证明)。模型应用:模型应用:(1)如
10、图)如图1,正方形,正方形ABCD的边长为的边长为2,E为为AB的中点,的中点,P是是AC上一动点。连结上一动点。连结BD,由正方形对称性可知,由正方形对称性可知,B与与D关于直线关于直线AC对称。连结对称。连结ED交交AC于于P,则,则PB+PE的最小值是的最小值是 。(2)如图)如图2, O的半径为的半径为2,点,点A、B、C在在 O上,上,OAOB,AOC=60,P是是OB上一动点,求上一动点,求PA+PC的最小值;的最小值;(3)如图)如图3,AOB=45,P是是AOB内一点,内一点,PO=10,Q、R分别是分别是OA、OB上的动点,求上的动点,求PQR周长的最小值。周长的最小值。图1
11、图2图3DPP2P1P分析:从知识上来看,本题是考查分析:从知识上来看,本题是考查“利用轴对称的性质利用轴对称的性质和三角形三边关系和三角形三边关系”求一定条件下的两条线段和的最小求一定条件下的两条线段和的最小值。从过程来看,值。从过程来看,本题却是考查在掌握一种模型或模式本题却是考查在掌握一种模型或模式之后能否善于在变形中应用,之后能否善于在变形中应用,而这种将变式或变形划归而这种将变式或变形划归为已有模型或模式的做法和能力,正是数学学习最为需为已有模型或模式的做法和能力,正是数学学习最为需要的能力。综合这两方面看,本题有较好的效度、可推要的能力。综合这两方面看,本题有较好的效度、可推广性和
12、教育性。广性和教育性。PE1ECABMB1NCABFBC1PCADE例例3:某汽车制造厂开发了一款新式电动汽车,计划一年生产安:某汽车制造厂开发了一款新式电动汽车,计划一年生产安装装240辆。由于抽调不出足够的熟练工来完成新式电动车的安装,辆。由于抽调不出足够的熟练工来完成新式电动车的安装,工厂决定招聘一些新工厂,他们经过培训后上岗,也能独立进行工厂决定招聘一些新工厂,他们经过培训后上岗,也能独立进行电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上电动汽车的安装,工厂决定招聘一些新工人,他们经过培训后上岗,也能独立进行电动汽车的安装。生产开始后,调研部门发现:岗,也能独立进行电动汽车的
13、安装。生产开始后,调研部门发现:1名熟练工和名熟练工和2名新工人每月可安装名新工人每月可安装8辆电动汽车;辆电动汽车;2名熟练工和名熟练工和3名新工人每月可安装名新工人每月可安装14辆电动汽车。辆电动汽车。(1)每名熟练工和新工人每月分别可以安装多少辆电动汽车?)每名熟练工和新工人每月分别可以安装多少辆电动汽车?(2)如果工厂招聘)如果工厂招聘n(0n10)名新工人,使得招聘的新工人和抽名新工人,使得招聘的新工人和抽调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工调的熟练工刚好能完成一年的安装任务,那么工厂有哪几种新工人的招聘方案?人的招聘方案?(3)在()在(2)的条件下,工厂给安装
14、电动汽车的每名熟练工每月)的条件下,工厂给安装电动汽车的每名熟练工每月发发2000元的工资,给每名新工人每月发元的工资,给每名新工人每月发1200元的工资,那么工厂元的工资,那么工厂招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月招聘多少名新工人,使新工人的数量多于熟练工,同时工厂每月支出的工资总额支出的工资总额W(元)尽可能的少?(元)尽可能的少?分析:本题以新式电动汽车的安装为背景,以招聘新工人为素分析:本题以新式电动汽车的安装为背景,以招聘新工人为素材,以人员的搭配组合使用为条件的载体,以完成一定任务为材,以人员的搭配组合使用为条件的载体,以完成一定任务为确定招聘方案的标准,自然
15、和谐地设计了前两问。整题的问题确定招聘方案的标准,自然和谐地设计了前两问。整题的问题模型为:结果模型为:结果=f(招聘方案的情景,新工人,条件,决策性要(招聘方案的情景,新工人,条件,决策性要求)。本题的设置意在考查学生建立方程组、一次函数模型来求)。本题的设置意在考查学生建立方程组、一次函数模型来分析解决问题的能力,以及求解方程组等技能的掌握状况,使分析解决问题的能力,以及求解方程组等技能的掌握状况,使用解答题形式逐问呈现,较好地发掘了问题模型所蕴含的考试用解答题形式逐问呈现,较好地发掘了问题模型所蕴含的考试价值,有利于达到试卷预设的考查目标。价值,有利于达到试卷预设的考查目标。 例例4、分
16、油的问题、分油的问题在山西民间,有一个人们常提的问题,说的是:在山西民间,有一个人们常提的问题,说的是:3斤斤的葫的葫7斤的罐斤的罐,10斤的油篓分一半。斤的油篓分一半。实际上是:有一个能装实际上是:有一个能装10斤油的油篓装满了油,另外斤油的油篓装满了油,另外只有两个容器只有两个容器,即即:能装能装3斤油的葫芦和能装斤油的葫芦和能装7斤油的罐。斤油的罐。现在要用两个容器即能装现在要用两个容器即能装3斤油的葫芦和能装斤油的葫芦和能装7斤的罐斤的罐, 把把10斤油分出一半来。问:该怎么分?斤油分出一半来。问:该怎么分?解解:要把要把10斤油分出一半来斤油分出一半来, 必须把必须把7斤的罐的油倒出
17、斤的罐的油倒出2斤到斤到3斤的葫中,斤的葫中, 而而3斤的葫中油的另外一斤油可由斤的葫中油的另外一斤油可由7-32=1得得来来例例5、真和假、真和假很久以前,在很远的地方,住着两个种族的人:阿纳尼阿斯很久以前,在很远的地方,住着两个种族的人:阿纳尼阿斯人人他们都是积习很深的说谎者;迪昂根尼斯人他们都是积习很深的说谎者;迪昂根尼斯人他他们无例外地都是诚实者。一次,一个外来者来访这块土地,们无例外地都是诚实者。一次,一个外来者来访这块土地,遇见三个居民,问他们各属于什么种族。第一个人回答声音遇见三个居民,问他们各属于什么种族。第一个人回答声音很低,外来者没听清楚他说了什么。第二个人指着第一个人很低
18、,外来者没听清楚他说了什么。第二个人指着第一个人说:他说他是阿纳尼阿斯人说:他说他是阿纳尼阿斯人”。第三个人指着第二个人说:。第三个人指着第二个人说:“你说谎你说谎”。请你想一想:他们各是什么种族的人。请你想一想:他们各是什么种族的人。解解:每一个居民必定说自己是每一个居民必定说自己是迪昂根尼斯人迪昂根尼斯人.迪昂根尼斯人这么迪昂根尼斯人这么说说,因为他们说真话因为他们说真话,阿纳尼阿斯人这么说阿纳尼阿斯人这么说,因为他们说慌话因为他们说慌话.因因此此,第二个人说的话必定是假的第二个人说的话必定是假的,因而因而,第三个人说的话是真的第三个人说的话是真的,他是迪昂根尼斯人他是迪昂根尼斯人.于是于
19、是,可以判断第二个人和第三个人属于什么种族可以判断第二个人和第三个人属于什么种族.第一个人属第一个人属于什么种族于什么种族,尚难确定尚难确定根据上面数据回答:根据上面数据回答:(1)若这个发电厂购)若这个发电厂购x台台A型风力发电机,则预计这些型风力发电机,则预计这些A型风力发电机一型风力发电机一年的发电量至少为年的发电量至少为 千瓦千瓦时。时。(2)已知)已知A型风力发电机每台型风力发电机每台0.3万元,万元,B型风力发电机每台型风力发电机每台0.2万元,该万元,该发电厂拟购置风力发电机共发电厂拟购置风力发电机共10台,希望购机的费用不超过台,希望购机的费用不超过2.6万元,而建万元,而建成
20、的发电厂每年发电总量成的发电厂每年发电总量不少于不少于102000千瓦千瓦时,请你提供符合条件的购时,请你提供符合条件的购机方案。机方案。例例6:(日用电量的计算):(日用电量的计算) 我国东南沿海某地的风力资源丰富,一年内日平均风速不小于我国东南沿海某地的风力资源丰富,一年内日平均风速不小于3米米/秒的时间秒的时间共约共约160天,其中日平均风速不小于天,其中日平均风速不小于6米米/秒的时间约占秒的时间约占60天。天。为了充分利用为了充分利用“风能风能”这种这种“绿色能源绿色能源”,该地拟建一个小型风力发电厂,该地拟建一个小型风力发电厂,决定选用决定选用A、B两种型号的风力发电机。根据产品说
21、明,这两种风力发电机两种型号的风力发电机。根据产品说明,这两种风力发电机在各种风速下的日发电量(即一天的发电量)如下表:在各种风速下的日发电量(即一天的发电量)如下表:分析分析:本题是属于综合费用最省的优化问题,问题解本题是属于综合费用最省的优化问题,问题解决的关键是寻找楼层的层数与综合费用的函数关系决的关键是寻找楼层的层数与综合费用的函数关系式,将问题转化为求函数的最值问题。式,将问题转化为求函数的最值问题。例例7:(住房问题):(住房问题) 某房屋开发公司用某房屋开发公司用100万元购得一块土地,该地可以万元购得一块土地,该地可以建造每层建造每层1000平方米的楼房,楼房的总建筑面积(即各
22、平方米的楼房,楼房的总建筑面积(即各层面积之和)的每平方米平均建筑费用与建筑高度有关。层面积之和)的每平方米平均建筑费用与建筑高度有关。楼房每升高一层,楼房每升高一层,整幢楼房每平方米建筑费用提高整幢楼房每平方米建筑费用提高5%,已知建筑已知建筑5层楼房时,每平方米的建筑费用为层楼房时,每平方米的建筑费用为400元,为元,为了使该楼每平方米的平均了使该楼每平方米的平均综合费用综合费用最省(综合费用是建筑最省(综合费用是建筑费用与购地费用之和),公司应把楼建成几层?费用与购地费用之和),公司应把楼建成几层?例例8:为了防范:为了防范“甲流甲流”病毒入侵校园,根据上级疾病控制病毒入侵校园,根据上级
23、疾病控制中心的要求:每平方米的教室地面,需用质量分数为中心的要求:每平方米的教室地面,需用质量分数为0.2%的过氧乙酸溶液的过氧乙酸溶液200克在进行喷洒消毒。克在进行喷洒消毒。(1)请估算:你所在班级的教室地面面积约为)请估算:你所在班级的教室地面面积约为 平方平方米(精确到米(精确到1平方米);平方米);(2)请计算:需要用质量分数为)请计算:需要用质量分数为20%的过氧乙酸溶液多少的过氧乙酸溶液多少克加水稀释,才能按疾病控制中心的要求,对你所在班级的克加水稀释,才能按疾病控制中心的要求,对你所在班级的教室地面消毒一次?教室地面消毒一次?分析:设教室面积为分析:设教室面积为a平方米,需用平
24、方米,需用x克的水将质量克的水将质量分数为分数为20%的过氧乙酸溶液进行稀释的过氧乙酸溶液进行稀释稀释前溶质质量稀释前溶质质量 = 稀释后溶质质量稀释后溶质质量(200ax)20% = 200a0.2% X = 198a一厂、二厂的技术员占厂内总人数的百分比分别是一厂、二厂的技术员占厂内总人数的百分比分别是 和和 (结果精确(结果精确到到1%)一厂、二厂一厂、二厂2008年的产量比年的产量比2007年的产值分别增长了年的产值分别增长了 万元和万元和 万万元。元。例例9:2008年国际金融危机使我国的电子产品出口受到严重影响,年国际金融危机使我国的电子产品出口受到严重影响,在这种情况下有两个电子
25、仪器厂仍然保持着良好的增长势头。在这种情况下有两个电子仪器厂仍然保持着良好的增长势头。(1)下面的两幅统计图(图)下面的两幅统计图(图5)反映了一厂、二厂各类人员数量)反映了一厂、二厂各类人员数量及工业值情况,根据统计图(图及工业值情况,根据统计图(图5)填空:)填空:(2)仅从以上情况分析,你认为哪个厂生产经营得好?为什么?仅从以上情况分析,你认为哪个厂生产经营得好?为什么?l 例例10:随着人民生活水平的不断提高,我市家庭轿车的拥有量:随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加。据统计,某小区逐年增加。据统计,某小区2006年底拥有家庭轿车年底拥有家庭轿车64辆,辆,2008
26、年底家庭轿车的拥有量达到年底家庭轿车的拥有量达到100辆。辆。(1)若该小区)若该小区2006年底到年底到2009年底家庭轿车拥有量的年平均年底家庭轿车拥有量的年平均增长率相同,求该小区到增长率相同,求该小区到2009年底家庭轿车将达到多少辆?年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资)为了缓解停车矛盾,该小区决定投资15万元再建造若干个万元再建造若干个停车位。据测算,建造费用分别为室内车位停车位。据测算,建造费用分别为室内车位5000元元/个,露天车个,露天车位位1000元元/个,考虑到实际因素,计划露天车位的数量不少于室个,考虑到实际因素,计划露天车位的数量不少于室内
27、车位的内车位的2倍,但不超过室内车位的倍,但不超过室内车位的2.5倍,求该小区最多可建倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案。两种车位各多少个?试写出所有可能的方案。例11:荆门火车货运站现有甲种货物:荆门火车货运站现有甲种货物1580吨,乙种货物吨,乙种货物1150吨,安排用一列货车将这批货物运往某市。这列货车可吨,安排用一列货车将这批货物运往某市。这列货车可挂挂A、B两种不同规格的货厢共两种不同规格的货厢共50节。已知用一节节。已知用一节A型货厢的型货厢的运费是运费是0.5万元,用一节万元,用一节B型资厢的运费是型资厢的运费是0.8万元。万元。 (1)设运输这批货物的总
28、运费为)设运输这批货物的总运费为y(万元),用(万元),用A型货厢型货厢的节数为的节数为x(节),试写出(节),试写出y与与x的函数关系式;的函数关系式; (2)如果甲种货物)如果甲种货物35吨和乙种货物吨和乙种货物15吨可装满一节吨可装满一节A型货型货厢,甲种货物厢,甲种货物25吨和乙种货物吨和乙种货物35吨可装满一节吨可装满一节B型货厢。按型货厢。按此要求安排此要求安排A、B两种货厢的节数,有哪几种运输方案?请两种货厢的节数,有哪几种运输方案?请你设计出来。你设计出来。 (3)利用函数的性质说明,在这些方案中,哪种方案总运)利用函数的性质说明,在这些方案中,哪种方案总运费最少?最少运费是多
29、少万元?费最少?最少运费是多少万元?例12、一头大象和一只蚊子头大象和一只蚊子一头大象的重量和一只蚊子的重量相等吗一头大象的重量和一只蚊子的重量相等吗?例例13:我曾以一道开放题:我曾以一道开放题“王老吉易拉罐的尺寸为什么是王老吉易拉罐的尺寸为什么是这样的这样的”为例进行教学:先让学生测量出听装为例进行教学:先让学生测量出听装345ml王老吉王老吉易拉罐的高和底面直径(高约为易拉罐的高和底面直径(高约为12.3cm,底面直径为,底面直径为6.6cm).然后围绕厂家为什么采用这样的尺寸,同学们展开然后围绕厂家为什么采用这样的尺寸,同学们展开了热烈的讨论了热烈的讨论.有的同学从审美角度去考虑(是否
30、满足有的同学从审美角度去考虑(是否满足“黄金黄金分割率分割率”);有的同学从经济效益的角度去考虑(是否用料);有的同学从经济效益的角度去考虑(是否用料最省,工时最省);有的同学从生理学的角度去考虑(是否最省,工时最省);有的同学从生理学的角度去考虑(是否手感最好,饮用最方便)手感最好,饮用最方便)虽然最后没有得到一个一致的、虽然最后没有得到一个一致的、十分完美的结论,但这节课对于培养学生的数学应用能力和十分完美的结论,但这节课对于培养学生的数学应用能力和发散性思维能力起着十分重要的作用发散性思维能力起着十分重要的作用. 比起学习抽象的数学理论,学习与实际紧密相连的数学建比起学习抽象的数学理论,
31、学习与实际紧密相连的数学建模对学生更有吸引力,能够引起学生兴趣并且能用他们熟悉的模对学生更有吸引力,能够引起学生兴趣并且能用他们熟悉的数学解决的问题还有很多,在教学中改编的有:数学解决的问题还有很多,在教学中改编的有: 20世纪是世界人口增长率最快的一段时期,联合国人口基世纪是世界人口增长率最快的一段时期,联合国人口基金组织把金组织把1999年年10月月12日定为世界日定为世界60亿人口日并预测到亿人口日并预测到2013年将达到年将达到70亿,亿,2028年将达到年将达到80亿,亿,2054年将达到年将达到90亿亿.请对请对未来约半个世纪的世界人口增长率做出分析,并制出图表说明,未来约半个世纪
32、的世界人口增长率做出分析,并制出图表说明,等等。学生对这些问题的研究,无疑会激发其学习数学的主动等等。学生对这些问题的研究,无疑会激发其学习数学的主动性,且能开拓学生创造性思维能力,养成善于发现问题,独立性,且能开拓学生创造性思维能力,养成善于发现问题,独立思考的习惯思考的习惯.。 图12分析:题目分析:题目1的问题是首先解决正方形一种特殊折叠形成的线的问题是首先解决正方形一种特殊折叠形成的线段比,进而通过类比与归纳,推广到较为一般的情形,最后再段比,进而通过类比与归纳,推广到较为一般的情形,最后再拓展推广到矩形相应的情形。题目拓展推广到矩形相应的情形。题目2的问题是将特殊摆放的的问题是将特殊
33、摆放的5个个同样大小的正方形通过同样大小的正方形通过“中心对称中心对称”剪拼成一个新正方形,进剪拼成一个新正方形,进而将这种方法推广应用到矩形的情况,最后又将这种方法以相而将这种方法推广应用到矩形的情况,最后又将这种方法以相反的过程应用于平行四边形。这样的考法使得题目问题展开的反的过程应用于平行四边形。这样的考法使得题目问题展开的方式和过程有助于考查学生数学学习经验的积累,而且对于改方式和过程有助于考查学生数学学习经验的积累,而且对于改进、引导教法和学法也有积极的意义。进、引导教法和学法也有积极的意义。 建模四:构造两个三角形,利用建模四:构造两个三角形,利用 全等或相似性质来求出全等或相似性
34、质来求出ABOAB例例15:要测量人民公园的荷花池:要测量人民公园的荷花池AB的距离的距离 ,由于条件限制无,由于条件限制无 法法 直接测量,请你用所学过的数学知识设计出一种测量直接测量,请你用所学过的数学知识设计出一种测量AB的的方案?方案?建模一:构造直角三角形,运用勾股定理解决问题,求出建模一:构造直角三角形,运用勾股定理解决问题,求出AB。建模二:构造等腰三角形或等边三角形,求出建模二:构造等腰三角形或等边三角形,求出AB。建模三:构造三角形及其中位线,利用中位线的性质求出建模三:构造三角形及其中位线,利用中位线的性质求出AB。点评:设计开放性试题的评分标准是中考的点评:设计开放性试题
35、的评分标准是中考的难点问题,如何处理好试题开放所导致的解难点问题,如何处理好试题开放所导致的解法多样及不同解法之间评分的等价性问题,法多样及不同解法之间评分的等价性问题,直接影响试题的效度。直接影响试题的效度。 例例16:问题背景问题背景 在某次活动课中,甲、乙、丙三个学习小组于同在某次活动课中,甲、乙、丙三个学习小组于同一时刻在阳光下对较园中一些物体进行了测量。下面是他们通过测一时刻在阳光下对较园中一些物体进行了测量。下面是他们通过测量得到的一些信息:量得到的一些信息:甲组:如图甲组:如图1,测得一根直立于平地,长为,测得一根直立于平地,长为80cm的竹竿的影长为的竹竿的影长为60cm.乙组
36、:如图乙组:如图2,测得学校旗杆的影长为,测得学校旗杆的影长为900cm。丙组:如图丙组:如图3,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其,测得校园景灯(灯罩视为球体,灯杆为圆柱体,其粗细忽略不计)的高度为粗细忽略不计)的高度为200cm,影长为,影长为156cm.任务要求任务要求(1)请根据甲、乙两组得到的信息计算出学校旗杆的高度;)请根据甲、乙两组得到的信息计算出学校旗杆的高度; 分析:本题的第(分析:本题的第(1)问考查利用平行线构造相似三角形,第)问考查利用平行线构造相似三角形,第(2)问通过利用圆的切线构造相似三角形及相似三角形较为典)问通过利用圆的切线构造相似三角形及相似三角形
37、较为典型的两种形式的判断和应用,较为全面地考查了相似三角形的判型的两种形式的判断和应用,较为全面地考查了相似三角形的判定与性质。特别地,对于第(定与性质。特别地,对于第(2)问而言,它通过要求学生两次)问而言,它通过要求学生两次使用相似知识解决问题的过程,较好地考查了学生综合运用数学使用相似知识解决问题的过程,较好地考查了学生综合运用数学知识的能力,具有较好的区分度。知识的能力,具有较好的区分度。(2)如图)如图3,设太阳光线,设太阳光线NH与与 O相切于点相切于点M。请根据甲、丙。请根据甲、丙两组得到的信息,求景灯灯罩的半径。(提示:如图两组得到的信息,求景灯灯罩的半径。(提示:如图3,景灯
38、的,景灯的影长等于线段影长等于线段NG的影长;需要时可采用等式的影长;需要时可采用等式1562+2082=2602)四、初中数学建模教学的意义四、初中数学建模教学的意义l1、数学建模就是建立数学模型的过程,数学模型是近似表达现象特、数学建模就是建立数学模型的过程,数学模型是近似表达现象特征的一种数学结构,实际上数学建模就是用数学作工具来解决现实生征的一种数学结构,实际上数学建模就是用数学作工具来解决现实生活中的实际问题的过程。活中的实际问题的过程。l2、各行各业的各种问题都可能数学建模,归结为数学问题的求解,、各行各业的各种问题都可能数学建模,归结为数学问题的求解,因此进行数学建模的教学的意义
39、是十分重大:因此进行数学建模的教学的意义是十分重大:因为是从实际提炼出因为是从实际提炼出来,而后又用之解决问题,故可激发学生极大的兴趣;来,而后又用之解决问题,故可激发学生极大的兴趣;学会了主动学会了主动学习,学会了读书、学会了去索取自己所要学的知识,对数学有了新学习,学会了读书、学会了去索取自己所要学的知识,对数学有了新的认识,学习数学的兴趣更高了,更自觉了;的认识,学习数学的兴趣更高了,更自觉了;运用的意识和应用的运用的意识和应用的能力得到锻炼,激发了他们的创新意识和创新能力;能力得到锻炼,激发了他们的创新意识和创新能力;促进数学教学促进数学教学改革,有利于更新观念,更新知识。改革,有利于
40、更新观念,更新知识。l3、数学的发展很大程度上是由数学的应用所推动的,实际生产与生、数学的发展很大程度上是由数学的应用所推动的,实际生产与生活中所涌现的各种数学问题,要求从数学理论上寻找合理的解决方法,活中所涌现的各种数学问题,要求从数学理论上寻找合理的解决方法,如果旧有的理论已经无法解决,预示着一个新的研究领域的产生,必如果旧有的理论已经无法解决,预示着一个新的研究领域的产生,必须预示着一种新的数学理论的诞生。须预示着一种新的数学理论的诞生。l4、学以致用本来就是教育的最重要原则之一,不管是为以后有用或、学以致用本来就是教育的最重要原则之一,不管是为以后有用或有一部分学生在学的时候马上就能用
41、上都是学习的目的。有一部分学生在学的时候马上就能用上都是学习的目的。l5、素质教育的主要目的是全面提高学生的综合素质,就数学来说,、素质教育的主要目的是全面提高学生的综合素质,就数学来说,一个很突出的方面是应用意识的培养,数学教学的根本目的是发展思一个很突出的方面是应用意识的培养,数学教学的根本目的是发展思维能力维能力 五、有关开展初中数学建模教学的几点建议五、有关开展初中数学建模教学的几点建议 l1、数学建模作业的评价以创新性、现实性、真实性、合理、数学建模作业的评价以创新性、现实性、真实性、合理性、有效性等几个方面作为标准,对建模的要求不可太高,性、有效性等几个方面作为标准,对建模的要求不
42、可太高,重在参与。重在参与。 2、数学建模问题难易应适中,千万不要搞一些脱离中学生、数学建模问题难易应适中,千万不要搞一些脱离中学生实际的建模教学,题目难度以实际的建模教学,题目难度以“跳一跳可以让学生够得到跳一跳可以让学生够得到”为度。为度。 3、建模教学对中考应用问题应当有所涉及。鉴于当前中学、建模教学对中考应用问题应当有所涉及。鉴于当前中学数学教学的实际,保持一定比例的中考应用问题是必要的,数学教学的实际,保持一定比例的中考应用问题是必要的,这样更有助于调动师生参与建模教学的积极性,保持建模教这样更有助于调动师生参与建模教学的积极性,保持建模教学的活力,促进初中数学建模教学的进一步发展。学的活力,促进初中数学建模教学的进一步发展。4、建议中学教师继续教育开设、建议中学教师继续教育开设“数学建模数学建模”课程,师范类课程,师范类高等院校数学专业有必要把高等院校数学专业有必要把“数学建模数学建模”列为必修课程。列为必修课程。 从数学的视觉去欣赏,抓住问题从数学的视觉去欣赏,抓住问题本质,才能创造奇迹。更期待我们用本质,才能创造奇迹。更期待我们用智慧去点燃这久远的灿烂文化智慧去点燃这久远的灿烂文化。 谢谢大家!