空间向量法解决立体几何证明-ppt课件.ppt

上传人(卖家):三亚风情 文档编号:2805228 上传时间:2022-05-28 格式:PPT 页数:34 大小:1.47MB
下载 相关 举报
空间向量法解决立体几何证明-ppt课件.ppt_第1页
第1页 / 共34页
空间向量法解决立体几何证明-ppt课件.ppt_第2页
第2页 / 共34页
空间向量法解决立体几何证明-ppt课件.ppt_第3页
第3页 / 共34页
空间向量法解决立体几何证明-ppt课件.ppt_第4页
第4页 / 共34页
空间向量法解决立体几何证明-ppt课件.ppt_第5页
第5页 / 共34页
点击查看更多>>
资源描述

1、数学专题二复习:2. 向量的夹角:abOABab0ab ,ab ,向量 的夹角记作:ab与a b | | cos,aba b 1.空间向量的数量积:111222( , , ),( , )ax y z bx y z设12121 2x xy yz zcos| |a babab ,12121 2222222111222x xy yz zxyzxyz4.向量的模长:2222|aaxyz( , , )ax y z设3.有关性质:两非零向量111222(,),(,)axyzbxyz12121 20 x xy yz z0aba b 5.5.共面向量定理共面向量定理: :如果两个向量如果两个向量 不共线不共线

2、, ,则向量则向量 与向量与向量 共面的充要共面的充要条件是存在实数对条件是存在实数对 使使 pOMabABAPp pxayb 空间四点空间四点P、M、A、B共面共面 存存在在唯唯一一实数对实数对,xyMPxMAyMB () 使得(1)OPxOMyOAzOBxyz 其其中中,推论推论: :一一.引入两个重要的空间向量引入两个重要的空间向量 1.直线的方向向量直线的方向向量 把把与直线平行的向量都称为与直线平行的向量都称为直线的方向向直线的方向向量量.如图如图,在空间直角坐标系中在空间直角坐标系中,由由A(x1,y1,z1)与与B(x2,y2,z2)确定的直线确定的直线AB的方向向量的方向向量是

3、是212121(,)ABxx yy zz zxyAB2.平面的法向量 与平面与平面垂直的向量叫做平面垂直的向量叫做平面的的法向量法向量. noxyzABCO1A1B1C1例1. 如图所示, 正方体的棱长为1(1)直线OA的一个方向向量坐标为_(2)平面OABC 的一个法向量坐标为_(3)平面AB1C 的一个法向量坐标为_(-1,-1,1)(0,0,1)(1,0,0) 练习练习:在棱长为在棱长为2的正方体的正方体ABCD-A1B1C1D1中中,O是面是面AC的中心的中心,求面求面OA1D1的法向量的法向量. A AABCDOA1B1C1D1zxy解:以解:以A为原点建立空间直角坐标系为原点建立空

4、间直角坐标系O-xyz,设平面设平面OA1D1的法向量的法向量为的法向量的法向量为n=(x,y,z), 那么那么O(1,1,0),A1(0,0,2),D1(0,2,2)得平面得平面OA1D1的法向量的坐标的法向量的坐标n=(2,0,1).取取z =120 xzy解得解得:2020 x yzx yz 得得:1OA1OD 由由 =(-1,-1,2), =(-1,1,2) 练习练习 如图,在四棱锥如图,在四棱锥P-ABCD中,底面中,底面ABCD是是正方形,侧棱正方形,侧棱PD底面底面ABCD,PD=DC=1 ,E是是PC的中点,的中点, 求平面求平面EDB的一个法向量的一个法向量.ABCDP PE

5、 E解:如图所示建立空间直角坐标系解:如图所示建立空间直角坐标系.(0,0,0),(0,0,1),1 1(0, )2 2PE依依题题意意得得D DB(1, 1,B(1, 1,0)0)1 1(0, )2 2DE DB =(1, 1,DB =(1, 1,0)0)XYZ设平面设平面EDB的法向量为的法向量为( , ,1)nx y, nnDEDB 则1101, 1, 1220ynxy于是二、立体几何中的向量方法二、立体几何中的向量方法平行关系平行关系mlab一一. 平行关系:平行关系:auv u (1) lm0aba b 二、垂直关系:二、垂直关系:lmab(2) l /auau lauABC3 ()

6、0uvu v u v 例例1 四棱锥四棱锥P-ABCD中,底面中,底面ABCD是正方是正方形形, PD底面底面ABCD,PD=DC=6, E是是PB的的中点,中点,DF:FB=CG:GP=1:2 . 求证:求证:AE/FG.ABCDP PG GXYZF FE EA(6,0,0),F(2,2,0),E(3,3,3),G(0,4,2), AE =(-3,3,3),FG =(-2,2,2)AE =(-3,3,3),FG =(-2,2,2)32 AE =FGAE =FGAE/FG 证证 :如图所示:如图所示, , 建立建立空间直角坐标系空间直角坐标系. ./ AEFGAEFGAEAE与与FGFG不共线

7、不共线几何法呢?几何法呢? 例例2 四棱锥四棱锥P-ABCD中,底面中,底面ABCD是正是正方形,方形,PD底面底面ABCD,PD=DC, E是是PC的的中点,中点, 求证:求证:PA/平面平面EDB.ABCDP PE EXYZG解解1 立体立体几何法几何法ABCDP PE EXYZ解解2:如图所示建立空间直角坐标系,点:如图所示建立空间直角坐标系,点D为坐标原点,设为坐标原点,设DC=1证明:证明:1 1(1,0,0),(0,0,1),(0, ),2 2APE依依题题意意得得B(1, 1,B(1, 1,0)0)(1,0, 1),PA PAEDB而平面EDBPA 平面所以,/1 1(0, )2

8、 2DE DB =(1, 1,DB =(1, 1,0)0)设平面设平面EDB的法向量为的法向量为( , ,1)nx y, nnDEDB 则1101, 1, 1220ynxy于是0PA nPAn ABCDADEFNM,AEBD,11,33BMBD ANAE,/MNCDE平平面面练练 如图,已知矩形如图,已知矩形和矩形和矩形所在平面相交于所在平面相交于ADAD,点,点分别在对角线分别在对角线上,且上,且求证:求证:ABCEFDMNABCDADEFNM,AEBD,11,33BMBD ANAE,/MNCDE平平面面练练 如图,已知矩形如图,已知矩形和矩形和矩形所在平面相交于所在平面相交于ADAD,点,

9、点分别在对角线分别在对角线上,且上,且求证:求证:ABCEFDMN几何法呢?几何法呢?ABCDADEFNM,AEBD,11,33BMBD ANAE,/MNCDE平平面面练练 如图,已知矩形如图,已知矩形和矩形和矩形所在平面相交于所在平面相交于ADAD,点,点分别在对角线分别在对角线上,且上,且求证:求证:2133DCDE MNMDDEEN 证明2233DBDEEA 22()()33DADCDEDADE ABCEFDMN MNDCDE 所以、共面/MNCDE故故平平面面MNCDE 但但平平面面几何法呢?几何法呢? 练习练习 棱长为棱长为a a 的正方体的正方体 中中,E,E、F F分别是棱分别是

10、棱AB,OAAB,OA上的动点,且上的动点,且AF=BE,AF=BE,求证:求证: CBAOOABC OCBAOAB CEFZ11A FO Exy 解:如图所示建立空间直角坐标系,设AF=BE=b.1( , , )A a a a(0,0)Fab1(0,0, )Oa(, ,0)E ab a1(,)A Faba 1(, ,)O Eab aa 110A F O E 11A FO E 1A FO EABCDPEFXYZ-, ,. (2) :.PABCDABCDPDABCD PDDCEPCEFPBPBFPBEFD 例例2 2. . 四四棱棱锥锥中中 底底面面是是正正方方形形底底面面点点是是的的中中点点

11、作作交交于于点点求求证证平平面面 证1:如图所示建立空间直角坐标系,设DC=1.)1,1 ,1(PB021210故DEPB)21,21,0(DEDEPB 所以,EDEEFPBEF且由已知EFDPB平面所以ABCDPEFXYZ-, ,:.PABCDABCDPDABCD PDDCEPCEFPBPBFPBEFD 例例2 2. . 四四棱棱锥锥中中底底面面是是正正方方形形底底面面点点是是的的中中点点作作交交于于点点求求证证平平面面 证2:,E,E是是AA1 1中点,中点,1111DCBAABCD 例例3 3 正方体正方体平面平面C1 1BD. 证明:证明:E求证:求证:平面平面EBD设正方体棱长为设正

12、方体棱长为2, 建立如图所示坐标系建立如图所示坐标系平面平面C1BD的一个法向量是的一个法向量是E(0,0,1)D(0,2,0)B(2,0,0)(2,0, 1)EB (0,2, 1)ED 设平面设平面EBD的一个法向量是的一个法向量是( , ,1)ux y0u EBu ED 由1 1(,1)2 2u 得1( 1, 1,1)vCA 0,u v 平面平面C1 1BD. 平面平面EBD 证明证明2:E,E,E是是AA1 1中点,中点,1111DCBAABCD 例例3 3 正方体正方体平面平面C1 1BD. 求证:求证:平面平面EBD-,:P ABCDABCDPDABCD GPB 练练习习 四四棱棱锥

13、锥中中 底底面面是是正正方方形形底底面面是是上上的的点点求求证证 平平面面GACGAC平平面面PDBPDBABCDPXYZG 例例4棱长都等于2的正三棱柱ABC-A1B1C1, D,E分别是AC,CC1的中点,求证: (1)A1E 平面DBC1; (2)AB1 平面DBC1A1C1B1ACBEDzxy 解:以D为原点,DA为x轴,DB为y轴建立空间直角坐标系D-xyz.则 A(-1,0,0), B(0, ,0), E(1,0,1), A1(-1,0,2), B1(0, ,2), C1(1,0,2). 设平面DBC1的法向量为n=(x,y,z),则 解之得 , 取z = 1得n=(-2,0,1) (1) =- n,从而A1E 平面DBC1 (2) ,而 n =-2+0+2=0 AB1 平面DBC1330302yzx02yzx) 1, 0 , 2(1EA)2 , 3, 1 (1AB1AB

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(空间向量法解决立体几何证明-ppt课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|