1、 云南省大理州南涧彝族自治县民族中学2016-2017学年高二下学期6月月考(理)本试卷分第卷(选择题)和第卷(非选择题)两部分,共150分,考试用时120分钟。注:所有题目在答题卡上做答第I卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是最符合题目要求的。)1、设集合,若,则( )A B C D2、( )A B C D3、我国古代数学名著算法统宗中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A1
2、盏 B3盏 C5盏 D9盏4、设,满足约束条件,则的最小值是( )A B C D5、安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A12种 B18种 C24种 D36种6、展开式中的系数为( )A15B20C30D357、某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A10B12C14D16 8、执行下面的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为( )A5B4C3D29、设函数f(x)=cos(x+
3、),则下列结论错误的是( )Af(x)的一个周期为2By=f(x)的图像关于直线x=对称Cf(x+)的一个零点为x=Df(x)在(,)单调递减10已知椭圆C:,(ab0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为( )ABCD11已知函数有唯一零点,则a=( )ABCD112在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上若= +,则+的最大值为( )A3B2CD2第卷(非选择题 共90分)二、填空题(本大题共4小题, 每小题5分,共20分,把答案填在题中横线上。)13、已知向量a,b的夹角为60,|a|=2,|b|=1,则|
4、 a +2 b |= .14、若tan,则tan= .15、.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件.16、已知,函数在区间1,4上的最大值是5,则a的取值范围是 三、解答题 (本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17、(本题10分)在直角坐标系xOy中,以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为(1)M为曲线上的动点,点P在线段OM上,且满足,求点P的轨迹的直角坐标方程;(2)设点A的
5、极坐标为,点B在曲线上,求面积的最大值18、(本题12分)ABC的内角A,B,C的对边分别为a,b,c,已知sinA+cosA=0,a=2,b=2(1)求c;(2)设D为BC边上一点,且AD AC,求ABD的面积19、(本题12分)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完根据往年销售经验,每天需求量与当天最高气温(单位:)有关如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶为了确定六月份的订购计划,统计了前三年六月份各天的最
6、高气温数据,得下面的频数分布表:最高气温10,15)15,20)20,25)25,30)30,35)35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率。(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?20、(本题12分)如图,四面体ABCD中,ABC是正三角形,ACD是直角三角形,ABD=CBD,AB=BD(1)证明:平面ACD平面ABC;(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分
7、,求二面角DAEC的余弦值21、(本题12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程22、(本题12分)已知函数 =x1alnx(1)若 ,求a的值;(2)设m为整数,且对于任意正整数n,m,求m的最小值参考答案1. 【解析】由得,所以,故选C。2. 3. 【解析】塔的顶层共有灯x盏,则各层的灯数构成一个公比为2的等比数列,由可得,故选B。4.5. 【解析】 ,故选D。6. 【解析】因为,则展开式中含的项为,展开式中含的项为,故的系数为,选C.7. 【解析】
8、由题意该几何体的直观图是由一个三棱锥和三棱柱构成,如下图,则该几何体各面内只有两个相同的梯形,则这些梯形的面积之和为,故选B.8.【解析】阅读程序框图,程序运行如下:首先初始化数值:,然后进入循环体:此时应满足,执行循环语句:;此时应满足,执行循环语句:;此时满足,可以跳出循环,则输入的正整数N的最小值为2.故选D.9.【解析】当 时, ,函数在该区间内不单调.本题选择D选项10.【解析】以线段为直径的圆是,直线与圆相切,所以圆心到直线的距离,整理为,即,即 ,故选A11.12. 【解析】如图,建立平面直角坐标系.设,易得圆的半径,即圆C的方程是,若满足,则 ,所以,设,即,点在圆上,所以圆心
9、到直线的距离,即,解得,所以的最大值是3,即的最大值是3,故选A.13. 【解析】,所以.秒杀解析:利用如下图形,可以判断出的模长是以2为边长,一夹角为60的菱形的对角线的长度,则为.14. 【解析】故答案为15. 【解析】应从丙种型号的产品中抽取件,故答案为1816. 【解析】,分类讨论:当时,函数的最大值,舍去;当时,此时命题成立;当时,则:或,解得:或综上可得,实数的取值范围是17.解:(2)设点B的极坐标为,由题设知,于是OAB面积当时,S取得最大值所以OAB面积的最大值为18.解:19. 解:(1)由题意知,所有可能取值为200,300,500,由表格数据知,.因此的分布列为0.20
10、.40.4(2)由题意知,这种酸奶一天的需求量至多为500,至少为200,因此只需考虑.当时,若最高气温不低于25,则;若最高气温位于区间,则;若最高气温低于20,则;因此.当时,若最高气温不低于20,则;若最高气温低于20,则;因此.所以n=300时,Y的数学期望达到最大值,最大值为520元.20. 解:(1)由题设可得,从而.又是直角三角形,所以.取AC的中点O,连接DO,BO,则DOAC,DO=AO.又由于是正三角形,故.所以为二面角的平面角.在中,.又,所以,故.所以平面ACD平面ABC.(2)由题设及(1)知,两两垂直,以为坐标原点,的方向为轴正方向,为单位长,建立如图所示的空间直角
11、坐标系.则.由题设知,四面体ABCE的体积为四面体ABCD的体积的,从而E到平面ABC的距离为D到平面ABC的距离的,即E为DB的中点,得.故.设是平面DAE的法向量,则即 可取.设是平面AEC的法向量,则同理可取.则.所以二面角D-AE-C的余弦值为.21.解:(2)由(1)可得.故圆心的坐标为,圆的半径.由于圆过点,因此,故,即,由(1)可得.所以,解得或.当时,直线的方程为,圆心的坐标为,圆的半径为,圆的方程为.当时,直线的方程为,圆心的坐标为,圆的半径为,圆 的方程为22. 解:(1)的定义域为.若,因为,所以不满足题意;若,由知,当时,;当时,所以在单调递减,在单调递增,故x=a是在的唯一最小值点.由于,所以当且仅当a=1时,.故a=1.(2)由(1)知当时,.令得.从而.故.而,所以的最小值为.