1、12.2 三角形全等的判定(4)教学目标知识与技能1、已知斜边和直角边会作直角三角形;2、熟练掌握“斜边、直角边”,利用它判定一般三角形全等的方法判定两个直角三角形全等过程与方法经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理能力情感态度价值观通过探究与交流,解决一些问题,获得成功的体验,进步激发探究的积极性教学重点掌握判定两个直角三角形全等的特殊方法-HL教学难点熟练选择判定方法,判定两个直角三角形全等教学过程(师生活动)设计理念创设情境,引入新课提问:1.判定两个三角形全等的条件有哪些?结论:SSS、SAS、AAS、ASA设置情景:根据这些条件,对于两个直角三角形,除了
2、直角相等的条件,还要满足几个条件,这两个直角三角形就全等了? 今天我们就来探究两个直角三角形全等的条件复习旧知,可更快更准确地解答下面的两个直角三角形全等的条件探究新知提问:两个直角三角形,除了直角相等外,还要满足几个条件,这两个直角三角形就全等了?(让学生观察课件中的两个直角三角形并思考回答)1.再满足一边一锐角对应相等,就可用“AAS”或“ASA”证全等了2.再满足两直角边对应相等,就可用“SAS”证全等了提问:那么,如果满足斜边和一条直角边对应相等,这两个直角三角形全等吗? (学生不能作肯定回答,只能作某种猜测)现在不要求马上给出结论看看,通过动手探究,你是否能得出结论直角三角形我们用R
3、t表示思考: 任意画出一个RtABC,使C90,再画一个RtABC,使BCBC,ABAB,把画好的RtABC剪下,放到RtABC上,看看它们是否全等(课件出示题目,师生一起看题) (学生独立探究,动手作图)提问: (1)ABC就是所求作的三角形吗?(2)画好后,把RtABC剪下,放到RtABC上,看它们全等吗? (3)发现了什么结论?(全等) 结论:斜边和一条直角边分别相等的两个直角三角形全等(简写成“斜边,直角边”或“HL”) 注意两点:一是“HL”是仅适用于Rt的特殊方法。二是应用“HL”时,虽只有两个条件,但必须先有两个Rt的条件 4讲解教材P42页例5结合图形,先分析已知条件和求证从这
4、些已知条件中,我们能发现什么?结合所求证的,你又能发现什么?(留时间让生思考)小组展示自己的成果:ACBC,BDAD,又加上ACBD,我们能找到两个Rt:RtADB,RtBCA又因为ACBD已经是一条直角边相等,我们再找到另一条件就行了 从这道题中可以看到,若已知几个垂直关系,我们可以试着找找Rt,看看这些Rt的关系若能发现全等,那就能得出对应边、对应角相等了比较判定两个直角三角形全等的条件与判定两个一般三角形全等的条件的异同点,感知直角三角形全等判定也能用已学的判定条件激发学生挑战新问题的积极性 培养学生的分析、作图能力画法直接由教师蛤出,而不安排学生画出,是考虑学生反映画图有一定的难度,况且作图不是本节课的重点 让学生表述,培养归纳、表达能力,并能进一步理解“HL”这一条件自己读题、审题,先独自证明,培养学生独自面对围难的勇气和信心 让学生上台说方法,说思路,培养学生的逻辑推理能力;展示自己的探究成果,获得成功的喜悦 巩固练习教科书第43页练习1、2小结与作业小结提高你有什么收获?你还有什么疑问?布置作业1必做题:2选做题: 3