中小学数学基本思想分析课件.ppt

上传人(卖家):三亚风情 文档编号:2959377 上传时间:2022-06-15 格式:PPT 页数:94 大小:701.50KB
下载 相关 举报
中小学数学基本思想分析课件.ppt_第1页
第1页 / 共94页
中小学数学基本思想分析课件.ppt_第2页
第2页 / 共94页
中小学数学基本思想分析课件.ppt_第3页
第3页 / 共94页
中小学数学基本思想分析课件.ppt_第4页
第4页 / 共94页
中小学数学基本思想分析课件.ppt_第5页
第5页 / 共94页
点击查看更多>>
资源描述

1、中小学中小学数学基本思想分析数学基本思想分析康纪权康纪权0 导言数学基本思想的应用数学基本思想的应用数学基本思想的价值数学基本思想的价值数学基本思想的探究数学基本思想的探究数学基本思想的内涵数学基本思想的内涵 导言导言导言导言 在在中小学中小学数学教学内容中有两条线索:数学教学内容中有两条线索: 一条是显性的知识线索,如概念、法则、一条是显性的知识线索,如概念、法则、公式、性质等,这是一条有形的线索。公式、性质等,这是一条有形的线索。 另一条是隐性的数学思想与方法线索,它另一条是隐性的数学思想与方法线索,它是蕴涵、渗透在知识体系之中的,是一条无是蕴涵、渗透在知识体系之中的,是一条无形的线索。形

2、的线索。 数学思想和数学方法是数学知识在更高层数学思想和数学方法是数学知识在更高层次上的抽象和概括,它蕴涵在数学知识的发次上的抽象和概括,它蕴涵在数学知识的发生,发展之中生,发展之中. 导言导言 全日制全日制义务教育数学课程标准义务教育数学课程标准(2001年版)年版)总体目标的第一条提出总体目标的第一条提出:“让学生获得适应未来社会让学生获得适应未来社会生活和进一步发展所必需的数学知识生活和进一步发展所必需的数学知识(包括数学事实、包括数学事实、数学活动经验数学活动经验)以及基本的数学思想方法和必要的应以及基本的数学思想方法和必要的应用技能用技能”。 全日制全日制义务教育数学课程标准义务教育

3、数学课程标准(2011年版)年版)总体目标的第一条修改为,通过义务教育阶段的数总体目标的第一条修改为,通过义务教育阶段的数学学习,学生能学学习,学生能:“获得适应社会生活和进一步发展获得适应社会生活和进一步发展所必需的数学的基础知识、基本技能、基本思想、所必需的数学的基础知识、基本技能、基本思想、基本活动经验基本活动经验”导言导言并把并把 “四基四基”与数学素养的培养整合为:与数学素养的培养整合为: 掌握数学基础知识,训练数学基本技能,掌握数学基础知识,训练数学基本技能, 领悟数学基本思想,积累数学基本活动经验。领悟数学基本思想,积累数学基本活动经验。 这一总体目标不仅贯穿于小学和初中,而且也

4、应这一总体目标不仅贯穿于小学和初中,而且也应贯穿于高中的数学教学,说明数学基本思想的重要贯穿于高中的数学教学,说明数学基本思想的重要性。性。导言导言著名数学教育家波利亚说:著名数学教育家波利亚说:“完善的思想方法犹完善的思想方法犹如北极星,许多人通过它而找到了正确的道路。如北极星,许多人通过它而找到了正确的道路。”日本著名数学教育家米山国藏指出:日本著名数学教育家米山国藏指出:“学生所学学生所学的数学知识,在进入社会后几乎没有什么机会应用,的数学知识,在进入社会后几乎没有什么机会应用,因而这种作为知识的数学,通常在走出校门后不到因而这种作为知识的数学,通常在走出校门后不到一两年就忘掉了。然而不

5、管他们从事什么工作,惟一两年就忘掉了。然而不管他们从事什么工作,惟有深深铭刻于头脑中的数学思想和方法等随时随地有深深铭刻于头脑中的数学思想和方法等随时随地发生作用,使他们受益终身发生作用,使他们受益终身”。1、数学基本思想的内涵数学基本思想的内涵数学基本思想的应用数学基本思想的应用数学基本思想的价值数学基本思想的价值数学基本思想的探究数学基本思想的探究数学基本思想的内涵数学基本思想的内涵 导言导言1、数学基本思想的内涵数学基本思想的内涵数学是什么数学是什么1数学思想是什么数学思想是什么2数学基本思想是什么数学基本思想是什么3数学思想方法是什么数学思想方法是什么41、数学基本思想的内涵数学基本思

6、想的内涵v数学是什么 一是从数学所从属的工作领域来看,数学是技术;一是从数学所从属的工作领域来看,数学是技术;数学是逻辑;数学是自然科学;数学是科学;数学数学是逻辑;数学是自然科学;数学是科学;数学是艺术;数学是文化;是艺术;数学是文化; 二是从数学研究的对象来看,数学研究数和量;数二是从数学研究的对象来看,数学研究数和量;数学研究现实世界的数量关系和空间形式;数学研究学研究现实世界的数量关系和空间形式;数学研究计算;数学研究模型;数学研究结构;数学研究演计算;数学研究模型;数学研究结构;数学研究演绎系统;数学研究无穷;绎系统;数学研究无穷; 三是从数学的社会价值来看,数学是语言;数学是三是从

7、数学的社会价值来看,数学是语言;数学是工具;数学是框架;数学是符号游戏工具;数学是框架;数学是符号游戏; 数学是什么数学是什么全日制全日制义务义务教育教育数学课程标准数学课程标准(20012001年版)指出;年版)指出;v 数学是人们对客观世界定性把握和定量刻画、逐渐抽数学是人们对客观世界定性把握和定量刻画、逐渐抽象概括、形成方法和理论,并形成广泛应用的过程;象概括、形成方法和理论,并形成广泛应用的过程;v 数学作为一种普遍适用的技术,有助于人们收集、整数学作为一种普遍适用的技术,有助于人们收集、整理、描述信息,建立数学模型,进而解决问题,直接理、描述信息,建立数学模型,进而解决问题,直接为社

8、会创造价值;为社会创造价值;v 数学是人们生活、劳动和学习必不可少的工具,能够数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;数学为其它型可以有效地描述自然现象和社会现象;数学为其它科学提供了语言、思想和方法,是一切重大技术发展科学提供了语言、思想和方法,是一切重大技术发展的基础;数学在提高人的推理能力、抽象能力、想像的基础;数学在提高人的推理能力、抽象能力、想像力和创造力等方面都有着独特的作用;数学是人类的力和创造力等方面都有着独特的作用;数学是人类的一种文化,它的内

9、容、思想、方法和语言是现代文明一种文化,它的内容、思想、方法和语言是现代文明的重要组成部分的重要组成部分1、数学是什么、数学是什么v 全日制义务教育数学课程标准全日制义务教育数学课程标准(2011年版)指出;年版)指出; 数学是研究数量关系和空间形式的科学;数学是研究数量关系和空间形式的科学; 数学作为对于客观现象抽象概括而逐渐形成的科学数学作为对于客观现象抽象概括而逐渐形成的科学语言与工具语言与工具 ; 数学是人类文化的重要组成部分,数学素养是现代数学是人类文化的重要组成部分,数学素养是现代社会每一个公民应该具备的基本素养。社会每一个公民应该具备的基本素养。1、数学基本思想的内涵数学基本思想

10、的内涵数学是什么数学是什么1数学思想是什么数学思想是什么2数学基本思想是什么数学基本思想是什么3数学思想方法是什么数学思想方法是什么42、数学思想是什么、数学思想是什么v 数学思想,是指现实世界的空间形式和数量关系反映数学思想,是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果;到人们的意识之中,经过思维活动而产生的结果;v 数学思想,是对数学事实与理论经过概括后产生的本数学思想,是对数学事实与理论经过概括后产生的本质认识;质认识;v 数学思想,是对数学知识内容和所使用方法的本质认数学思想,是对数学知识内容和所使用方法的本质认识,就是从某些具体数学认识过程中提炼出的

11、一些观识,就是从某些具体数学认识过程中提炼出的一些观点,它在后继认识运动中被反复证实其正确性,带有点,它在后继认识运动中被反复证实其正确性,带有一般意义和相对稳定的特征,是对数学规律的理性认一般意义和相对稳定的特征,是对数学规律的理性认识。识。v 数学思想,是数学中的理性认识,是数学知识的本质数学思想,是数学中的理性认识,是数学知识的本质,是数学中的高度抽象、概括的内容,它蕴涵于运用,是数学中的高度抽象、概括的内容,它蕴涵于运用数学方法分析、处理和解决数学问题的过程之中。数学方法分析、处理和解决数学问题的过程之中。1、数学基本思想的内涵数学基本思想的内涵数学是什么数学是什么1数学思想是什么数学

12、思想是什么2数学基本思想是什么数学基本思想是什么3数学思想方法是什么数学思想方法是什么43、数学基本思想是什么、数学基本思想是什么v数学基本思想,是体现或应该体现于基数学基本思想,是体现或应该体现于基础数学中的具有奠基性、总结性和最广础数学中的具有奠基性、总结性和最广泛性的数学思想,它们含有传统数学思泛性的数学思想,它们含有传统数学思想的精华和现代数学思想的基本特征,想的精华和现代数学思想的基本特征,并且是历史地发展着的。并且是历史地发展着的。1、数学基本思想的内涵数学基本思想的内涵数学是什么数学是什么1数学思想是什么数学思想是什么2数学基本思想是什么数学基本思想是什么3数学思想方法是什么数学

13、思想方法是什么44、数学思想方法是什么、数学思想方法是什么v 数学思想是人们对数学理论和内容的本质的认识,数学数学思想是人们对数学理论和内容的本质的认识,数学方法是数学思想的具体化形式;数学思想往往是观念的方法是数学思想的具体化形式;数学思想往往是观念的、普遍的、深刻的、一般的、内在的;而数学方法是在、普遍的、深刻的、一般的、内在的;而数学方法是在应用数学思想解决具体问题时,对某一类问题反复推敲应用数学思想解决具体问题时,对某一类问题反复推敲,逐渐形成某一类程序化的操作。数学方法往往是操作,逐渐形成某一类程序化的操作。数学方法往往是操作的、特殊的、表象的、具体的、程序的、技巧的。如等的、特殊的

14、、表象的、具体的、程序的、技巧的。如等量代换法、数学归纳法、换元法、配方法、列表法等等量代换法、数学归纳法、换元法、配方法、列表法等等。因此,数学思想不同于数学方法。因此,数学思想不同于数学方法。v 然而,数学思想常常通过数学方法去体现,数学方法又然而,数学思想常常通过数学方法去体现,数学方法又常常反映了某种数学思想。因此,我们往往把二者结合常常反映了某种数学思想。因此,我们往往把二者结合起來应用于问题解决中,统称为起來应用于问题解决中,统称为“数学思想方法数学思想方法”。3、数学基本思想的探究数学基本思想的探究数学基本思想的应用数学基本思想的应用数学基本思想的价值数学基本思想的价值数学基本思

15、想的探究数学基本思想的探究数学基本思想的内涵数学基本思想的内涵 导言导言3、数学基本思想的探究数学基本思想的探究v史宁中、刘晓玫两位教授在史宁中、刘晓玫两位教授在“对数学教育中几对数学教育中几个基本问题的认识个基本问题的认识”一文中说:数学的基本思一文中说:数学的基本思想有两条想有两条, 一是演绎的思想一是演绎的思想; 二是归纳的思想。二是归纳的思想。v 在中国传统的意义上在中国传统的意义上,只有归纳的方法只有归纳的方法, 没有演没有演绎的方法绎的方法. 如秦九韶的高次方程求解、同余法如秦九韶的高次方程求解、同余法等世界领先水平等世界领先水平, 依赖的就是归纳推理。但是依赖的就是归纳推理。但是

16、, 自从欧几里德几何传入中国之后自从欧几里德几何传入中国之后, 中国又只重中国又只重视演绎的思想视演绎的思想, 而忽视了归纳的思想。而忽视了归纳的思想。3、数学基本思想的探究数学基本思想的探究v 归纳在数学教育教学中的渗透归纳在数学教育教学中的渗透, 一方面是要教会学一方面是要教会学生从一些个别现象出发生从一些个别现象出发, 从一些个性出发从一些个性出发, 來推究一般來推究一般的事物有没有相同的结论;或者是根据一种现象的事物有没有相同的结论;或者是根据一种现象, 來推來推究产生这种现象的原因究产生这种现象的原因, 即考虑因果关系。即考虑因果关系。v 另一方面另一方面, 归纳的思想与分类有关。分

17、类是把一大归纳的思想与分类有关。分类是把一大类细分为若干个不同的小类。分类是有标准的类细分为若干个不同的小类。分类是有标准的, 有了标有了标准才能在标准下分类准才能在标准下分类, 分类需要符合这类和那类之间不分类需要符合这类和那类之间不相交的基本思想。如果每一小类中都有这样的性质相交的基本思想。如果每一小类中都有这样的性质, 是是不是这一大类东西就都有这个性质不是这一大类东西就都有这个性质, 也就是从一个个小也就是从一个个小的类出发的类出发, 进而推测到更大的一类是不是具有相同的结进而推测到更大的一类是不是具有相同的结论论, 这种思想就是归纳。实际上这种思想就是归纳。实际上, 从小学一年级开始

18、就从小学一年级开始就教分类教分类,也就渗透了归纳这种思想也就渗透了归纳这种思想3、数学基本思想的探究数学基本思想的探究v 黄翔教授在黄翔教授在“关于数学课标修订变化情况解读关于数学课标修订变化情况解读” 中说:中说:国家数学课程标准国家数学课程标准制定组组长、东北师范制定组组长、东北师范大学校长史宁中教授提出了大学校长史宁中教授提出了“数学教学的四基数学教学的四基”,引起引起了数学教育界的广泛关注。以前强调的双基是指基础了数学教育界的广泛关注。以前强调的双基是指基础知识、基本技能知识、基本技能, 双基教学重视的传授双基教学重视的传授,讲究精讲多练,讲究精讲多练,主张主张“练中学练中学”,相信,

19、相信“熟能生巧熟能生巧”,追求基础知识,追求基础知识的记忆和掌握、基本技能的操演与熟练,以使学生获的记忆和掌握、基本技能的操演与熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标。现在提出的四基不但包括了力为其主要的教学目标。现在提出的四基不但包括了基础知识、基本技能基础知识、基本技能, 还增加了基本思想和基本活动经还增加了基本思想和基本活动经验。验。v “基本思想主要是指演绎和归纳,这应当是整个数学基本思想主要是指演绎和归纳,这应当是整个数学教学的主线,是最上位的思想教学的主线,是最上位的思想”。这里所说的思想,。

20、这里所说的思想,是大的思想,不仅仅是在数学学科中,是希望学生领是大的思想,不仅仅是在数学学科中,是希望学生领会之后能够终生受益的那种思想会之后能够终生受益的那种思想3、数学基本思想的探究数学基本思想的探究v 有的学者强调,如果站在数学学科的角度来有的学者强调,如果站在数学学科的角度来看,数学的基本思想有三个:抽象、推理、模看,数学的基本思想有三个:抽象、推理、模型。型。v 人们通过抽象,从客观世界中得到数学的概人们通过抽象,从客观世界中得到数学的概念和法则,建立了数学学科;通过推理,进一念和法则,建立了数学学科;通过推理,进一步得到更多的结论,促进数学内部的发展;通步得到更多的结论,促进数学内

21、部的发展;通过建模,把数学应用到客观世界中,沟通了数过建模,把数学应用到客观世界中,沟通了数学与外部世界的桥梁。比如,由数量抽象到数学与外部世界的桥梁。比如,由数量抽象到数,由数量关系抽象到方程、函数(如正反比例,由数量关系抽象到方程、函数(如正反比例)等;通过推理计算可以求解方程;有了方程)等;通过推理计算可以求解方程;有了方程等模型,就可以把数学应用到客观世界中。等模型,就可以把数学应用到客观世界中。3、数学基本思想的探究数学基本思想的探究v 有的学者则认为,有的学者则认为,“数学的基本思想,主要有数学数学的基本思想,主要有数学抽象的思想、数学推理的思想、数学模型的思想和数抽象的思想、数学

22、推理的思想、数学模型的思想和数学审美的思想。学审美的思想。”认为认为“通过数学审美,看到数学通过数学审美,看到数学透过现象看本质透过现象看本质、和谐统一众多事物和谐统一众多事物中美的成中美的成份,感受到数学份,感受到数学以简驭繁以简驭繁、天衣无缝天衣无缝给我们给我们带来的愉悦,并且从带来的愉悦,并且从 美美的角度发现和创造新的数学。的角度发现和创造新的数学。”v 上述这些基本思想应该属于数学思想的最高层面,上述这些基本思想应该属于数学思想的最高层面,由其演变、派生、发展出来的数学思想还有很多,比由其演变、派生、发展出来的数学思想还有很多,比如:归纳思想、演绎思想、转化思想、分类思想、对如:归纳

23、思想、演绎思想、转化思想、分类思想、对应思想、数形结合思想、集合思想、方程思想、函数应思想、数形结合思想、集合思想、方程思想、函数思想、符号化思想、等等。下面仅就归纳思想、演绎思想、符号化思想、等等。下面仅就归纳思想、演绎思想和转化思想作较为详细的探讨思想和转化思想作较为详细的探讨3、数学基本思想数学基本思想演绎思想演绎思想2转换思想转换思想33.1、归纳思想v 归纳思想是由个别、特殊到一般的认识过程;归纳思想是由个别、特殊到一般的认识过程;是通过对特例或事物的一部分进行观察与综合,是通过对特例或事物的一部分进行观察与综合,进而发现和提出关于一般性结论或规律的过程;进而发现和提出关于一般性结论

24、或规律的过程;是通过揭露对象的部分属性过渡到对象整体属性是通过揭露对象的部分属性过渡到对象整体属性的过程的过程v 归纳思想虽然考察的只是若干个别现象,但是归纳思想虽然考察的只是若干个别现象,但是所得结论却能超出考察的范围,具有一般性。所得结论却能超出考察的范围,具有一般性。v 归纳思想的认识依据在于同类事物的各种特殊归纳思想的认识依据在于同类事物的各种特殊情形中蕰含的同一性和相似性情形中蕰含的同一性和相似性3.1、归纳思想v归纳思想的逻辑结构归纳思想的逻辑结构v 设设 Mi (i=1,2,3,n) 是要研究讨论对象是要研究讨论对象M的的特例或子集特例或子集. 若若 Mi (i=1,2,3,n)

25、 具有性质具有性质p, 则则由此猜想由此猜想M也可能具有性质也可能具有性质p. 这里这里,也可简单表也可简单表示为示为:v M蕰含蕰含 M1, M2 , Mn ,v M1, M2 , Mn为真为真 v M也可能为真也可能为真. mi3.1、归纳法v所谓归纳法所谓归纳法, 就是应用归纳思想认识就是应用归纳思想认识、分析、研究事物的方法、分析、研究事物的方法. 其主要步其主要步骤是骤是:v收集素材收集素材(观察、试验研宄对象观察、试验研宄对象) -归纳整理归纳整理-分析概括分析概括-形成猜想形成猜想. mi3.2、归纳法的作用v培养学生独立思考能力培养学生独立思考能力 应用归纳法的第二步是应用归纳

26、法的第二步是“归纳整理归纳整理”, 第三步是第三步是“分析概分析概括括”, 都是让学生独立思考,独立分析探究,独立解决问都是让学生独立思考,独立分析探究,独立解决问题,这正是新课改倡导的自主性、探究性学习题,这正是新课改倡导的自主性、探究性学习v培养学生观察能力培养学生观察能力 现代心理科学的研究表明,在人脑所获得的信息中,有现代心理科学的研究表明,在人脑所获得的信息中,有90%是通过视是通过视觉获取的觉获取的.达尔文说:达尔文说:“我没有突出我没有突出 的理解力,也没有过人的机智,只的理解力,也没有过人的机智,只是在觉察那些稍纵即逝的事物并对其进行精细观察的能力上,我可能是在觉察那些稍纵即逝

27、的事物并对其进行精细观察的能力上,我可能在众人之上在众人之上.”巴甫洛夫教育年轻人要巴甫洛夫教育年轻人要“观观 察、观察、再观察察、观察、再观察”.可见观可见观察在人类实践活动中具有极其重要的意义察在人类实践活动中具有极其重要的意义. 归纳法的第一步就是归纳法的第一步就是“收集素材收集素材”,让学生观察研究对象的一些零散,让学生观察研究对象的一些零散的、片言只语的、特殊的性质;第二步的、片言只语的、特殊的性质;第二步“归纳整理归纳整理”,再让学生有目,再让学生有目的、有步骤地进行细致的观察、分析和概括,获得完整、准确的数学的、有步骤地进行细致的观察、分析和概括,获得完整、准确的数学认识,使其思

28、维上升到理性认识,使其思维上升到理性.所以,数学课堂上的归纳法有力地培养了所以,数学课堂上的归纳法有力地培养了学生的观察能力学生的观察能力2n3.2、归纳法的作用v培养学生比较能力培养学生比较能力 著名教育家乌申斯基认为著名教育家乌申斯基认为“比较是一切理解和思维的基础,我们正比较是一切理解和思维的基础,我们正 是是通过比较来了解世界上的一切的通过比较来了解世界上的一切的”.比较法是把若干既有区别又有联系比较法是把若干既有区别又有联系的知识放在一起进行对比或类比的知识放在一起进行对比或类比.通过比较,归纳总结其异同,才能突通过比较,归纳总结其异同,才能突出其本质特征出其本质特征.归纳法的第三步

29、就是归纳法的第三步就是“分析概括分析概括”,在比较中舍弃不同,在比较中舍弃不同的、抽取共同的数学的东西而的、抽取共同的数学的东西而“形成猜想形成猜想”.有比较才能有鉴别,数学有比较才能有鉴别,数学的特性正是从比较中的特性正是从比较中 抽象出来的,没有比较就没有抽象抽象出来的,没有比较就没有抽象.所以,运用归所以,运用归纳法可以培养学生的数学比较能力、辨别能力纳法可以培养学生的数学比较能力、辨别能力.v培养学生抽象能力培养学生抽象能力 抽象是从众多的事物中抽抽象是从众多的事物中抽 取出共同的、本质的特征,而舍弃其非本质取出共同的、本质的特征,而舍弃其非本质的特征的特征.它是数学中常用的、必不可少

30、的思维方法,与概括相互联系、它是数学中常用的、必不可少的思维方法,与概括相互联系、密不可分密不可分.抽象思维(抽象思维(abstract thinking)属于理性认识阶段,在对事)属于理性认识阶段,在对事物的本质属性进行分析、综合、比较的基础上形成概念物的本质属性进行分析、综合、比较的基础上形成概念. 归纳法的第三归纳法的第三步就是步就是“分析概括分析概括”, 再经过抽象思维而再经过抽象思维而“形成猜想形成猜想”2n3.2、归纳法的作用v培养学生概括能力培养学生概括能力 鲁宾斯坦说鲁宾斯坦说“思维是在概括中完成的思维是在概括中完成的”.思维的最显著特征思维的最显著特征是概括性是概括性.从心理

31、学角度讲,概括就是把不同事物的共同属从心理学角度讲,概括就是把不同事物的共同属性(本质的、非本质的)抽象出来后加性(本质的、非本质的)抽象出来后加 以综合,从而形成以综合,从而形成一个日常概念或者科学概念一个日常概念或者科学概念. 归纳法的第三步就是归纳法的第三步就是“分析概分析概括括”。概。概 括能力在智力活动中非常重要,没有概括就没有括能力在智力活动中非常重要,没有概括就没有概念,没有概念就无法进行逻辑思维概念,没有概念就无法进行逻辑思维.所以,运用归纳法培所以,运用归纳法培养学生的概括能力显得非常重要养学生的概括能力显得非常重要.2n3.3.1、完全归纳法v 一般说來一般说來, 归纳法分

32、为两种归纳法分为两种, 一是完全归纳法一是完全归纳法, 二是不完全二是不完全归纳法归纳法.v 完全归纳法是在研究事物的一切特殊情况所得结论的基础完全归纳法是在研究事物的一切特殊情况所得结论的基础上,得出有关事物的一般性结论的方法。即是根据某类事上,得出有关事物的一般性结论的方法。即是根据某类事物的全体对象具有某种属性进行慨括的一种思维方法。物的全体对象具有某种属性进行慨括的一种思维方法。v 完全归纳法的推理模式是:完全归纳法的推理模式是:v 设设A= a1,a2, a3an, 是研究对象的是研究对象的n种情况的集合种情况的集合.v 若若 a1具有性质具有性质c; 若若 a2具有性质具有性质c;

33、v 若若 a3具有性质具有性质c;v ;v 若若an 具有性质具有性质c;v 则集合则集合A= a1,a2, a3an, 中的任一元素中的任一元素ai (i=1,2,n) 都都具有性质具有性质c.mi3.3.1、完全归纳法v例1 证明证明: 1+2+3+ +n的末位数字不可的末位数字不可能是能是2, 4, 7, 9. 按顺序取按顺序取n=1, 2, 3, , 逐一求和逐一求和, 其末位数字其末位数字分别是分别是1, 3, 6, 0, 5, 1, 8, , 可以说明对可以说明对n的前的前面一些值面一些值, 结论成立结论成立, 但顺着这条思路但顺着这条思路, 证明对证明对一切自然数一切自然数n结论

34、成立时难以奏效结论成立时难以奏效. 不妨换一种不妨换一种思考方式思考方式, 因为因为 1+2+3+ +n =于是可先研究于是可先研究n(n+1) 的末位数的所有可能情况的末位数的所有可能情况, 得到如下证法得到如下证法. 2) 1(nn2) 1(nn3.3.1、完全归纳法v证明证明: 因为因为 1+2+3+ +n =v可先研究可先研究n(n+1) 的末位数字的末位数字. 为了清楚为了清楚, 列表如列表如下下:vn的末位数字的末位数字. 1 2 3 4 5 6 7 8 9 0vn(n+1) 的末位数字的末位数字 2 6 2 0 0 2 6 2 0 0v由此可见由此可见n(n+1) 的末位数字只能

35、是的末位数字只能是0 , 2 , 6 三个三个数字数字, v所以所以 的末位数字只可能是的末位数字只可能是0 , 5 ,1 ,6 , 3 , 8. 故故1+2+3+n的末位数字不能是的末位数字不能是2 ,4 ,7 , 9 . 2) 1(nn2) 1(nn2) 1(nn3.3.1、完全归纳法v例例2 若若a ,b ,c是奇数是奇数, 求证方程求证方程ax2+bx+c=0无无整整数根数根.v分析分析: 此题若用求根公式分析解答将比较此题若用求根公式分析解答将比较困难困难, 考虑到方程的系数都是奇数的特点考虑到方程的系数都是奇数的特点, 不妨以奇偶性分类不妨以奇偶性分类, 进而说明此方程既无进而说明

36、此方程既无奇数根又无偶数根奇数根又无偶数根, 也就完成了证明也就完成了证明.3.3.2、不完全归纳法v 不完全归纳法不完全归纳法v 在研究事物的某些特殊情况所得到的结论的基础上在研究事物的某些特殊情况所得到的结论的基础上, 得出得出有关事物的一般性结论的推理方法叫做不完全归纳法有关事物的一般性结论的推理方法叫做不完全归纳法.v 不完全归纳法的推理模式是:不完全归纳法的推理模式是:v S1具有具有(或不具有或不具有)p,v S2具有具有(或不具有或不具有)p,v v Sn具有具有(或不具有或不具有)p,v ( S1 , S2 ,Sn, 是是A类事物的部分对象类事物的部分对象 )v 结论结论: A

37、类事物具有类事物具有(或不具有或不具有)p.3.3.2、不完全归纳法v 例例3:化简:化简 v 分析分析: 由于由于n是自然数是自然数, 我们不妨从我们不妨从n的特殊值开始探索的特殊值开始探索.v 设设f(n)= v 则当则当n=1时时, f(1)=2; n=2时时, f(2)=4; v n=3时时, f(3)=8; n=4时时, f(4)=16; v 由此猜想由此猜想: f(n)=2n . v (用数学归纳法可证结论用数学归纳法可证结论)1n2(531)nn).2)(1n(n)(Nn)(Nn)1n2(531)nn).2)(1n(n2n3.2、不完全归纳法v 例例4:平面内:平面内n条直线条直

38、线(无平行且无三线共点者无平行且无三线共点者) 将平面分成多少部分将平面分成多少部分?v 分析分析: 直接回答结果不容易直接回答结果不容易, 我们仍从特殊的我们仍从特殊的n值出发进行探究与归纳值出发进行探究与归纳, 进进而总结规律而总结规律.v 设设n条直线将平面分成条直线将平面分成f(n) 部分部分.v n=1时时, f(1)=2; n=2时时, f(2)=4; n=3时时, f(3)=7;n=4时时, f(4)=11; n=5时时, f(5)=16; v 通过观察分析这些数据通过观察分析这些数据, 不难发现不难发现:v f(2)= f(1)+2=2+2; f(3)= f(2)+3=2+2+

39、3v f(4)= f(3) +4=2+2+3+4; f(5)= f(4)+5=2+2+3+4+5v 猜想猜想: f(n)= 2+2+3+4+5+ +n v =1+1+2+3+4+5+ +nv v (用数学归纳法可证结论用数学归纳法可证结论)2n222) 1n(n12nn3.3.2、不完全归纳法v例例5: 质数分布定理的发现质数分布定理的发现.v研究自然数研究自然数1到到N内质数的个数内质数的个数P:v(1) N=10, 在在1-10内质数个数内质数个数P=4;v(2) N=100, 在在1-100内质数个数内质数个数P=25;v(3) N=1000, 在在1-1000内质数个数内质数个数P=1

40、68;v(4) N= 106, 在在1-106内质数个数内质数个数P=78498;v(5) N= 109 , 在在1-109 内质数个数内质数个数P=50847478.2n3.3.2、不完全归纳法v 观察观察(1) (2) (3),N成成10倍地扩大倍地扩大, 而而P扩大倍数约为扩大倍数约为6倍倍;观察观察(3) (4) (5), N成成103 倍地扩大倍地扩大, P扩大倍数是否约为扩大倍数是否约为 63倍呢倍呢? 显然显然不是这样不是这样, 而是要比而是要比 63倍增长得快倍增长得快, 甚至超过甚至超过83 倍倍.v 因此因此, 设想把设想把N与质数个数与质数个数P比一比比一比, 观察一下观

41、察一下 比值比值. 可见比可见比值值 随着随着N的增大而增大的增大而增大, 但增大的速度显然是慢下來了但增大的速度显然是慢下來了. 通过通过比较比较 与与lnN的值的值, 易知易知 v 由此猜想:由此猜想: 即从即从1到任何自然数到任何自然数N之间所含质数的个之间所含质数的个数数 当当N越大时越大时, 近似程度越高近似程度越高.v 注注: 这一猜想经过这一猜想经过80多年的研究多年的研究, 终于在终于在1896年由法国数学家阿达玛年由法国数学家阿达玛(Hadamard,J.) 和比利时数学家德拉瓦莱和比利时数学家德拉瓦莱-普森(普森(Dela Vallee-Poussin.Ch.J)作出了完整

42、的证明)作出了完整的证明, 成为著名的质数定理成为著名的质数定理PNPN1lnNNPInNpNNNPln1lnlimNNPn3.3.2、不完全归纳法v 例例6: “欧拉公式欧拉公式”的发现的发现.v 欧拉曾观察一些特殊的多面体欧拉曾观察一些特殊的多面体, 并将每个多面体的面数并将每个多面体的面数F、顶、顶点数点数V、棱数、棱数E数出来数出来, 并列成下表并列成下表:v 仔细观察上表仔细观察上表, 有有 F+VE=2v 猜想:任意多面体的面数猜想:任意多面体的面数F 、顶点数、顶点数V 、 棱数棱数E都有关系都有关系v F+VE=2欧拉证明了该猜想的正确性,成为了著名的欧拉证明了该猜想的正确性,

43、成为了著名的“欧拉公式欧拉公式”2n多面体多面体面数面数F顶点数顶点数V棱数棱数E三棱锥三棱锥446四棱锥四棱锥558三棱柱三棱柱569五棱锥五棱锥6610立方体立方体6812八面体八面体8612五棱柱五棱柱71015二十面体二十面体201230十二面体十二面体122030有有n个侧面的棱柱个侧面的棱柱n+22n3n有有n个侧面的棱锥个侧面的棱锥n+1n+12n3.2、不完全归纳法v 例例7. 哥德巴赫猜想哥德巴赫猜想v 1742年德国数学家哥德巴赫(年德国数学家哥德巴赫(Goldbach)在研究中发现:)在研究中发现:v 大于大于4的偶数总能写成两个奇素数之和。的偶数总能写成两个奇素数之和。

44、v 例如:例如:6=3+3 , 8=5+3 , 10=7+3 , 12=7+5 , 14=11+3=7+7 .v 16=13+3=11+5 , 18=11+7=13+5 , 20=13+7=17+3 v 哥德巴赫把这个猜想写信告诉了欧拉哥德巴赫把这个猜想写信告诉了欧拉. 欧拉在回信中肯定了欧拉在回信中肯定了这个猜想这个猜想, 但他不能证明但他不能证明. 两百多年来两百多年来, 为了证明这个猜想为了证明这个猜想, 数数学家们做了无数次的努力学家们做了无数次的努力, 仍没有证明仍没有证明. 最好的结果是我国数最好的结果是我国数学家陈景润在学家陈景润在1966年证明了年证明了v “每一个充分大的偶数

45、都能表示为一个素数及一个不超过二每一个充分大的偶数都能表示为一个素数及一个不超过二个素数的积之和个素数的积之和”.v 这个定理记为这个定理记为(1+2), 国外誉为国外誉为“陈氏定理陈氏定理”2n3.3.2、不完全归纳法v 例例8. 费马数费马数v 法国数学家费马(法国数学家费马(Fermat)曾考察过形如)曾考察过形如v 的数的数(称为费马数称为费马数). 他发现他发现, 当当n=0,1,2,3,4时时, F(n) 的值分别为的值分别为3,5,17,257,65537都是质数都是质数, 于是进行了归纳于是进行了归纳, 提出了猜想提出了猜想:v 所有形如所有形如 v 的数均为素数的数均为素数.

46、2nNnnFn12)(2NnnFn12)(23.3.2、不完全归纳法v 他没有证明这个猜想他没有证明这个猜想, 并向英国数学家沃里斯要求证明并向英国数学家沃里斯要求证明. 然而然而欧拉却发现欧拉却发现, v 当当n=5时时, F(5)=4294967297=641*6700417 是个合数是个合数, 这说明这说明费马的猜想是错误的费马的猜想是错误的.v 事实上事实上, F(6), F(7) ,F(8) 等也不是素数等也不是素数. 费马数引起了人们广费马数引起了人们广泛兴趣泛兴趣, 迄今为止迄今为止, 人们只知道前人们只知道前5个费马数是素数个费马数是素数, 其余近其余近50个已经研究过的费马数

47、都是合数个已经研究过的费马数都是合数. 究竟费马数中是否有无穷多究竟费马数中是否有无穷多个素数、是否有无穷多个合数个素数、是否有无穷多个合数, 至今仍未解决至今仍未解决. 有人根据目前有人根据目前研究过的费马数的情况研究过的费马数的情况, 提出了反费马猜想提出了反费马猜想: “费马数中只有费马数中只有有限个素数有限个素数, 其余的都是合数其余的都是合数”. 当然当然, 这个猜想是否正确这个猜想是否正确, 还还有待进一步证实有待进一步证实.2n3.3.2、不完全归纳法v例例9. 考察考察f(n)= n2-n+41vf(1)=41 , f(2)=43 , f(3)=47 , vf(4)=53 ,

48、f(5)=61, f(6), f(7), f(8), f(40)均是质数均是质数, v由此归纳出由此归纳出:v对任意非零自然数对任意非零自然数n, f(n) 都是质数的结论都是质数的结论 v错了错了.v因为当因为当n=41时时, f(41)已不是质数了已不是质数了.2n4、数学基本思想数学基本思想演绎思想演绎思想2转换思想转换思想33.4、演绎思想v什么是什么是演绎思想演绎思想 当人们获得一般原理之后,就以这种原理为指导,对尚未研当人们获得一般原理之后,就以这种原理为指导,对尚未研究或尚未深入研究过的各种个别的、具体的事物进行研究,究或尚未深入研究过的各种个别的、具体的事物进行研究,找出其特殊

49、的本质。这种由一般原理推出特殊场合的知识的找出其特殊的本质。这种由一般原理推出特殊场合的知识的思维形式称为演绎思想。运用演绎思想的解题方法称为演绎思维形式称为演绎思想。运用演绎思想的解题方法称为演绎法。法。v演绎推理的基本形式演绎推理的基本形式三段论式三段论式 一个三段论式由大前提、小前提和结论三个简单的判断组成一个三段论式由大前提、小前提和结论三个简单的判断组成。大前提是一个一般性原理,小前提给出了一个适合一般性。大前提是一个一般性原理,小前提给出了一个适合一般性原理的特殊场合,结论是大前提和小前提的逻辑结果。原理的特殊场合,结论是大前提和小前提的逻辑结果。2n3.4、演绎思想v三段论推理的

50、基本模式为:三段论推理的基本模式为:v 大前提:一切大前提:一切M都是都是P(或(或M具有性质具有性质P)v 小前提:小前提: S是是M(或(或S在在M内)内)v 结结 论论: S是是P(或(或S具有性质具有性质P)v其中其中P称为大项、称为大项、M称为中项、称为中项、S称为小项称为小项. 在这里在这里, 大项包含中项大项包含中项, 中项包含小项中项包含小项, 中项是个媒介中项是个媒介, 在结在结论中媒介就消失了。论中媒介就消失了。2n3.4、演绎思想v例例10. 无限不循环小数是无理数,无限不循环小数是无理数, (大前题)(大前题)v 丌是无限不循环小数,丌是无限不循环小数, (小前题)(小

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 初中 > 数学 > 其它资料
版权提示 | 免责声明

1,本文(中小学数学基本思想分析课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|