1、圆锥曲线最值问题5大方面最值问题是圆锥曲线中的典型问题,它是教学的重点也是历年高考的热点。解决这类问题不仅要紧紧把握圆锥曲线的定义,而且要善于综合应用代数、平几、三角等相关知识。以下从五个方面予以阐述。一求距离的最值例1.设AB为抛物线y=x2的一条弦,若AB=4,则AB的中点M到直线y+1=0的最短距离为 ,解析:抛物线y=x2的焦点为F(0 ,),准线为y=,过A、B、M准线y=的垂线,垂足分别是A1、B1、M1,则所求的距离d=MM1+=(AA1+BB1) +=(AF+BF) +AB+=4+=,当且仅当弦AB过焦点F时,d取最小值,评注:灵活运用抛物线的定义和性质,结合平面几何的相关知识
2、,使解题简洁明快,得心应手。二求角的最值例2M,N分别是椭圆的左、右焦点,l是椭圆的一条准线,点P在l上,则MPN的最大值是 . 解析:不妨设l为椭圆的右准线,其方程是,点,直线PM和PN倾斜角分别为.于是 即MPN的最大值为.评注:审题时要注意把握MPN与PM和PN的倾斜角之间的内在联系.三、求几何特征量代数和的最值例3.点M和F分别是椭圆上的动点和右焦点,定点B(2,2).求|MF|+|MB|的最小值.求|MF|+|MB|的最小值.解析:易知椭圆右焦点为F(4,0),左焦点F(-4,0),离心率e=,准线方程x=.|MF| + |MB| = 10|MF | + |MB| =10(|MF|M
3、B|)10|FB|=102. 故当M,B,F三点共线时,|MF|+|MB|取最小值102.过动点M作右准线x=的垂线,垂足为H,则.于是|MF|+|MB|=|MH|+|MB|HB|=.可见,当且仅当点B、M、H共线时,|MF|+|MB|取最小值.评注:从椭圆的定义出发,将问题转化为平几中的问题,利用三角形三边所满足的基本关系,是解决此类问题的常见思路。例4点P为双曲线的右支上一点,M,N分别为和上的点,则PMPN的最大值为 .解析:显然两已知圆的圆心分别为双曲线的左焦点和右焦点.对于双曲线右支上每一个确定的点P,连结PF1,并延长PF1交F1于点Mo.则PM0为适合条件的最大的PM,连结PF2
4、,交F2于点No.则PN0为适合条件的最小的PN.于是故PMPN的最大值为6.评注:仔细审题,合理应用平面几何知识,沟通条件与所求结论的内在联系,是解决本题的关键.例5已知e1,e2分别是共轭双曲线和的离心率,则e1+e2的最小值为 .解析: 考虑到,故得. 即e1+e2的最小值为.评注:解题关键在于对圆锥曲线性质的准确理解,并注意基本不等式等代数知识的合理应用.四、求面积的最值例6已知平面内的一个动点P到直线的距离与到定点的距离之比为,点,设动点P的轨迹为曲线C.求曲线C的方程;过原点O的直线l与曲线C交于M,N两点.求MAN面积的最大值.解析:设动点P到l的距离为d,由题意根据圆锥曲线统一
5、定义,点P的轨迹C为椭圆., 可得 故椭圆C的方程为:若直线l存在斜率,设其方程为l与椭圆C的交点 将y=kx代入椭圆C的方程并整理得. 于是 又 点A到直线l的距离 故MAN的面积 从而 当k=0时,S2=1得S=1 当k0时,S21得S1 当k 0, a245, 故amin=3,得(2a)min=6,此时椭圆方程为.解法2:设椭圆=1与直线xy+9=0的公共点为M(acos,),则acos+9=0有解.=9cos(+)=,|19a245, amin=3,得(2a)min=6,此时椭圆的方程.解法3:先求得F1(3,0)关于直线xy+9=0的对称点F(9,6),设直线xy+9=0与椭圆的一个交点为M,则2a=|MF1|+|MF2| =|MF| +|MF2|FF2|=6,于是(2a)min=6,此时易得: a2=45, b2=36,于是椭圆的方程为.评注:本题分别从代数、三角、几何三种途径寻求解决。由不同角度进行分析和处理,有利于打开眼界,拓宽思路,训练思维的发散性。解决圆锥曲线中的最值问题,要熟练准确地掌握圆锥曲线的定义、性质,在此基础上,灵活合理地运用函数与方程、转化与划归及数形结合等思想方法,仔细审题,挖掘隐含,寻求恰当的解题方法。此外,解题过程力争做到思路清晰、推理严密、运算准确、规范合理。