1、陕西省中考数学历年(2016-2022年)真题分类汇编专题12 统计与概率一、填空题1已知一组数据:3,5,x,7,9的平均数为6,则x= 二、综合题2某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);假设顾
2、客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率3某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统
3、计,绘制了如下统计表:组别“劳动时间”t/分钟频数组内学生的平均“劳动时间”/分钟At60850B60t901675C90t12040105Dt12036150根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在 组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.4有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是 ;(2)
4、若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.5从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为 ;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.6今年9月,第十四届全国运动会将在陕西省举行本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集
5、了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为 ,众数为 ;(2)求这60天的日平均气温的平均数;(3)若日平均气温在1821的范围内(包含18和21)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.7王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20
6、条鱼质量的中位数是 ,众数是 . (2)求这20条鱼质量的平均数; (3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元? 8小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率; (2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率. 9现有A、B
7、两个不透明袋子,分别装有3个除颜色外完全相同的小球。其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球。(1)将A袋摇匀,然后从A袋中随机取出一个小球,求摸出小球是白色的概率; (2)小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜。请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平。 10本学期初,某校为迎接中华人民共和国建国七十周年,开展了以“不忘初心,缅怀革命先烈,奋斗新时代”为主题的读书活动。校德育处对本校七年级学生四月份“阅读该主题相关书籍的读书量”(下面简称:“读书量”)进行了随
8、机抽样调查,并对所有随机抽取学生的“读书量”(单位:本)进行了统计,如下图所示:根据以上信息,解答下列问题:(1)补全上面两幅统计图,写出本次所抽取学生四月份“读书量”的众数; (2)求本次所抽取学生四月份“读书量”的平均数; (3)已知该校七年级有1200名学生,请你估计该校七年级学生中,四月份“读书量”为5本的学生人数。 11如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转
9、动转盘,直到指针指向一个扇形的内部为止)(1)转动转盘一次,求转出的数字是2的概率;(2)转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率12对垃圾进行分类投放,能有效提高对垃圾的处理和再利用减少污染,保护环境为了了解同学们对垃圾分类知识的了解程度增强同学们的环保意识,普及垃圾分类及投放的相关知识某校数学兴趣小组的同学们设计了“垃圾分类知识及投放情况”问卷,并在本校随机抽取若干名同学进行了问卷测试根据测试成绩分布情况,他们将全部测试成绩分成A、B、C、D四组,绘制了如下统计图表:“垃圾分类知识及投放情况”问卷测试成绩统计表依据以上统计信息,解答下列问题:(1)求得m ,n
10、;(2)这次测试成绩的中位数落在 组;(3)求本次全部测试成绩的平均数13某校计划成立学生社团,要求每一位学生都选择一个社团,为了了解学生对不同社团的喜爱情况,学校随机抽取了部分学生进行“我最喜爱的一个学生社团”问卷调查,规定每人必须并且只能在“文学社团”、“科学社团”、“书画社团”、“体育社团”和“其他”五项中选择一项,并将统计结果绘制了如下两个不完整的统计图表社团名称人数文学社团18科技社团a书画社团45体育社团72其他b请解答下列问题:(1)a= ,b= ;(2)在扇形统计图中,“书画社团”所对应的扇形圆心角度数为 ;(3)若该校共有3000名学生,试估计该校学生中选择“文学社团”的人数
11、14端午节“赛龙舟,吃粽子”是中华民族的传统习俗节日期间,小邱家包了三种不同馅的粽子,分别是:红枣粽子(记为A),豆沙粽子(记为B),肉粽子(记为C),这些粽子除了馅不同,其余均相同粽子煮好后,小邱的妈妈给一个白盘中放入了两个红枣粽子,一个豆沙粽子和一个肉粽子;给一个花盘中放入了两个肉粽子,一个红枣粽子和一个豆沙粽子根据以上情况,请你回答下列问题:(1)假设小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是多少?(2)若小邱先从白盘里的四个粽子中随机取一个粽子,再从花盘里的四个粽子中随机取一个粽子,请用列表法或画树状图的方法,求小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率15养成
12、良好的早锻炼习惯,对学生的学习和生活都非常有益,某中学为了了解七年级学生的早锻炼情况,校政教处在七年级随机抽取了部分学生,并对这些学生通常情况下一天的早锻炼时间x(分钟)进行了调查现把调查结果分成A,B,C,D四组,如下表所示,同时,将调查结果绘制成下面两幅不完整的统计图请你根据以上提供的信息,解答下列问题:(1)补全频数分布直方图和扇形统计图;(2)所抽取的七年级学生早锻炼时间的中位数落在 区间内;(3)已知该校七年级共有1200名学生,请你估计这个年级学生中约有多少人一天早锻炼的时间不少于20分钟(早锻炼:指学生在早晨7:007:40之间的锻炼)16某校为了进一步改变本校七年级数学教学,提
13、高学生学习数学的兴趣,校教务处在七年级所有班级中,每班随机抽取了6名学生,并对他们的数学学习情况进行了问卷调查我们从所调查的题目中,特别把学生对数学学习喜欢程度的回答(喜欢程度分为:“A非常喜欢”、“B比较喜欢”、“C不太喜欢”、“D很不喜欢”,针对这个题目,问卷时要求每位被调查的学生必须从中选一项且只能选一项)结果进行了统计,现将统计结果绘制成如下两幅不完整的统计图请你根据以上提供的信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)所抽取学生对数学学习喜欢程度的众数是 ;(3)若该校七年级共有960名学生,请你估算该年级学生中对数学学习“不太喜欢”的有多少人?答案解析部分1【
14、答案】62【答案】(1)解:转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;一次“有效随机转动”可获得“乐”字的概率为: 15(2)解:画树状图得:共有25种等可能的结果,该顾客经过两次“有效随机转动”后,获得一瓶可乐的有2种情况,该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率为: 225 3【答案】(1)C(2)解:x=1100(508+7516+10540+15036)=112(分钟),这100名学生的平均“劳动时间”为112分钟;(3)解:120040+36100=912(人),估计在该校学生中,“劳动时间”不少于90分钟的有912人.4【答
15、案】(1)25(2)解:列表如下:第二个第一个66778612131314612131314713131415713131415814141515由列表可知,共有20种等可能的结果,其中两个西瓜的重量之和为15kg的结果有4种.P=420=15.5【答案】(1)12(2)解:列表如下: 第二次第一次23362 (2,3)(2,3)(2,6)3(3,2) (3,3)(3,6)3(3,2)(3,3) (3,6)6(6,2)(6,3)(6,3) 由上表可知,共有12种等可能的结果,其中牌面数字恰好相同的结果有2种,P牌面相同=212=166【答案】(1)19.5;19(2)解: x=160(175+
16、1812+1913+209+216+224+236+245)=20 ,这60天的日平均气温的平均数为20(3)解:12+13+9+66030=20 , 预估西安市今年9月份日平均气温为“舒适温度”的天数为20天7【答案】(1)1.45kg;1.5kg(2)解: x 120(1.21+1.34+1.45+1.56+1.62+1.71.0) 1.45(kg), 这20条鱼质量的平均数为1.45kg;(3)解:181.45200090%46980(元), 答:估计王大伯近期售完鱼塘里的这种鱼可收入46980元.8【答案】(1)解:小亮随机摸球10次,其中6次摸出的是红球,这10次中摸出红球的频率 6
17、10 35 ;(2)解:画树状图得: 共有16种等可能的结果,两次摸出的球中一个是白球、一个是黄球的有2种情况,两次摸出的球中一个是白球、一个是黄球的概率 216 18 .9【答案】(1)解:A袋中共有3个球,其中有2个白球, P(摸出白球) 23(2)解:根据题意,列表如下: 红1红2白白1(白1,红1)(白1,红2)(白1,白)白2(白2,红1)(白2,红2)(白2,白)红(红,红1)(红,红2)(红,白)由上表可知,共有9种等可能结果,其中颜色相同的结果有4种,颜色不同的结果有5种,P(颜色相同) 49 ,P(颜色不同) 59 ,49 59 ,这个游戏规则对双方不公平10【答案】(1)解
18、:抽取的学生数为:35%=60人, 读书量为4本的人数为:6020%=12(人),读书量为3本的人数所占的百分比为:1-5%-30%-20%-10%=35%,补全统计图如图所示:读书量为3本的人数最多,所以“读书量”的众数为:3(2)解:平均数= 31+182+213+124+653+18+21+12+6=3(3)解:四月份“读书量”为5本的学生人数= 1200660=120 (人) 11【答案】(1)解:由题意可知:“1”和“3”所占的扇形圆心角为120,所以2个“2”所占的扇形圆心角为3602120120,转动转盘一次,求转出的数字是2的概率为 120360 13(2)解:由(1)可知,该
19、转盘转出“1”、“3”、“2”的概率相同,均为 13 ,所有可能性如下表所示:第一次 第二次1231(1,1)(1,2)(1,3)2(2,1)(2,2)(2,3)3(3,1)(3,2)(3,3)由上表可知:所有可能的结果共9种,其中数字之积为正数的的有5种,其概率为 5912【答案】(1)30;19%(2)B(3)解:本次全部测试的平均成绩 2581+5543+5100+2796200 =80.1分13【答案】(1)36;9(2)90(3)解:估计该校学生中选择“文学社团”的人数是3000 18180 =300(人)14【答案】(1)解:由题意可得,小邱从白盘中随机取一个粽子,恰好取到红枣粽子
20、的概率是: 24 = 12 ,即小邱从白盘中随机取一个粽子,恰好取到红枣粽子的概率是 12.(2)解:由题意可得,出现的所有可能性是:(A,A)、(A,B)、(A,C)、(A,C)、(A,A)、(A,B)、(A,C)、(A,C)、(B,A)、(B,B)、(B,C)、(B,C)、(C,A)、(C,B)、(C,C)、(C,C),小邱取到的两个粽子中一个是红枣粽子、一个是豆沙粽子的概率是: 31615【答案】(1)解:如图所示:(2)C(3)解:1200(65%+20%)=1020(人),答:估计这个年级学生中约有1020人一天早锻炼的时间不少于20分钟16【答案】(1)解:由题意可得,调查的学生有:3025%=120(人),选B的学生有:12018306=66(人),B所占的百分比是:66120100%=55%,D所占的百分比是:6120100%=5%,故补全的条形统计图与扇形统计图如右图所示,(2)比较喜欢(3)解:由(1)中补全的扇形统计图可得,该年级学生中对数学学习“不太喜欢”的有:96025%=240(人),即该年级学生中对数学学习“不太喜欢”的有240人