1、2.4.2等比数列(第二课时)教学目标教学目标知识与技能目标知识与技能目标等比中项的概念;掌握判断数列是否为等比数列常用的方法;进一步熟练掌握等比数列的通项公式、性质及应用过程与能力目标过程与能力目标明确等比中项的概念;进一步熟练掌握等比数列的通项公式、性质及应用教学重点教学重点等比数列的通项公式、性质及应用教学难点教学难点灵活应用等比数列的定义及性质解决一些相关问题 na1nnaqa)(*Nn 为为非非零零常常数数)q(是等比数列是等比数列.一般地,如果一个数列从第一般地,如果一个数列从第2项起,每一项与前一项项起,每一项与前一项的比等于同一个常数,那么这个数列就叫做的比等于同一个常数,那么
2、这个数列就叫做等比数列等比数列.1.2.隐含:任一项隐含:任一项00qan且3.q=1时,时,为常数列。为常数列。na一、温故知新:一、温故知新:等比数列的通项公式:等比数列的通项公式:an=a1qn-1 (nN,q0)特别地,等比数列an中,a10,q01111nnmmaa qaa q解:由等比数列的通项公式可知n mqnma两式相除,得an mnmaa qn-1n1a=a q试比较与上式二二.学以致用学以致用已知等比数列的公比为已知等比数列的公比为q,第第m项为项为 ,求求 .mana10101551a=a q4q解:由 得 512q 520155522aa q或练习已知等比数列已知等比数
3、列 .20155,5,20,aaaan求求 三.等比中项 观察如下的两个数之间,插入一个什么数后者三个数就会成观察如下的两个数之间,插入一个什么数后者三个数就会成为一个等比数列:为一个等比数列:(1)1,9 (2)-1,-4(3)-12,-3 (4)1,13261 当当ab0时时,在在a与与b中间插入一个数中间插入一个数G,使,使a,G,b成等比成等比数列,那么数列,那么G叫做叫做a与与b的的等比中项等比中项。abGabG2即是是开始A=1n=1A=1/2An=n+1n5?输出A结束否否例题讲解例题讲解例例2.2.根据右图的框图根据右图的框图,写出所写出所打印数列的前打印数列的前5 5项项,并
4、建立并建立数列的递推公式数列的递推公式.这个数列这个数列是等比数列吗是等比数列吗?解解:用:用an 表示题中公比为表示题中公比为q的等比数列,由已知条件,有的等比数列,由已知条件,有,18,1243aa18123121qaqa即解得解得 因此因此,答:这个数列的第答:这个数列的第1项与第项与第2项分别是项分别是.8316与11nnqaa823316qaa12316a123q 例例一个等比数列的第项和第项分别是一个等比数列的第项和第项分别是和,求它的第项和第项和,求它的第项和第项n2n3n6是n)21(n)31(n)61(是1.1.定义法定义法:)且且无关的数或式子无关的数或式子是与是与0,(1
5、 qnqaann四、判断等比数列的方法四、判断等比数列的方法)0(211 nnnaaa2.2.中项法中项法:三个数三个数a,b,c成等比数列成等比数列2bac.223121 nnnaaaaaa、五、五、等比数列等比数列的性质的性质,1qpnmNqpnm 且且、若若qpnmaaaa则3.如果是项数相同的等比数列如果是项数相同的等比数列,那那么也是等比数列么也是等比数列 na nbnnba 结论:如果是项数相同的等结论:如果是项数相同的等比数列,那么也是等比数列比数列,那么也是等比数列 na nbnnba 证明:设数列证明:设数列 的公比为的公比为p,的公比为的公比为q,那么数列,那么数列 的第的
6、第n项与第项与第n+1项分项分别为别为 与与 ,即,即 与与 因为因为它是一个与它是一个与n无关的常数,所以是一个以无关的常数,所以是一个以pq为公比的等比数列为公比的等比数列 na nbnnba 1n11n1qbpan1n1qbpa1n11)pq(ban11)pq(ba,pq)pq(ba)pq(bababa1n11n11nn1n1n 特别地特别地,如果是如果是 等比数列,等比数列,c是不等是不等于的常数,那么数列于的常数,那么数列 也是等比数列也是等比数列 nanac探究探究对于例中的等比数列与,数列也一定是等比数列吗?na nbnnba是1.定义法定义法2.公比公比(差差)3.等比等比(差
7、差)中项中项4.通项公式通项公式5.性质性质(若若m+n=p+q)daann 1q不可以不可以是是0,d可以可以是是0等比中项等比中项abG 等差中项等差中项baA 211 nnqaadnaan)1(1 qpnmaaaa qpnmaaaa mnmnqaa dmnaamn)(等差数列等差数列qaann 1 等比数列等比数列1.首项为首项为3,末项为末项为3072,公比为公比为2的等的等比数列的项数有比数列的项数有()A.11项项 B.12项项 C.13项项 D.10项项2.在等比数列在等比数列 中中,则则na,24,3876543 aaaaaa 11109aaaA.48 B.72 C.144 D.192 练习题练习题:AD3.在等比数列在等比数列 中中,则公比则公比q等于等于:na5642aaa A.1或或2 B.-1或或-2 C.1或或-2 D.-1或或2 C ,7,.4321 aaaan若若已已知知等等比比数数列列.321,8naaaa求求 2111,42,1 qaqa或或课课 后后 作作 业业第第3、7、8题题组组A4.260习题习题P选做选做:P59 探究探究选做选做:P75 第第1,2,4题题