材料力学第七章应力状态及强度理论课件.ppt

上传人(卖家):三亚风情 文档编号:3318497 上传时间:2022-08-19 格式:PPT 页数:57 大小:3.03MB
下载 相关 举报
材料力学第七章应力状态及强度理论课件.ppt_第1页
第1页 / 共57页
材料力学第七章应力状态及强度理论课件.ppt_第2页
第2页 / 共57页
材料力学第七章应力状态及强度理论课件.ppt_第3页
第3页 / 共57页
材料力学第七章应力状态及强度理论课件.ppt_第4页
第4页 / 共57页
材料力学第七章应力状态及强度理论课件.ppt_第5页
第5页 / 共57页
点击查看更多>>
资源描述

1、第七章第七章应力状态与强度理论应力状态与强度理论7-1 何谓应力状态何谓应力状态同一点处,不同方向斜截面上同一点处,不同方向斜截面上应力也不一样,应力也不一样,同一点处,不同方向斜截同一点处,不同方向斜截面上应力的集合,称为该面上应力的集合,称为该点的点的应力状态应力状态1、什么是应力状态、什么是应力状态研究应力状态:研究应力状态:一点处所有斜截面上的应力情况一点处所有斜截面上的应力情况2cos2sin21最大、最小正应力、切应力最大、最小正应力、切应力围绕某点截取的无限小的围绕某点截取的无限小的正六面体正六面体dxdydzdV 当单元体边长趋于零,当单元体边长趋于零,单元体趋于一个点,因单元

2、体趋于一个点,因此当说某此当说某“点点”的应力的应力状态,是指单元体的应状态,是指单元体的应力状态力状态轴向拉伸时的单元体轴向拉伸时的单元体纯扭转时的单元体纯扭转时的单元体弯曲时的单元体弯曲时的单元体弯曲与扭转组合变形时的单元体弯曲与扭转组合变形时的单元体假设:假设:1、相互平行的微面上,应力相等、相互平行的微面上,应力相等2、同一面上的应力均匀、同一面上的应力均匀一般情况下,每个一般情况下,每个基本微分面基本微分面上上有三个应力分量:有三个应力分量:1 个正应力和个正应力和 2个剪应力个剪应力3、应力状态的分类、应力状态的分类单向应力状态单向应力状态三对面上,三对面上,只有一对面上有只有一对

3、面上有,另两对面,另两对面上没有应力上没有应力平面应力状态平面应力状态三对面上,三对面上,有两对面上有有两对面上有,另一对面上没有应力,另一对面上没有应力空间应力状态空间应力状态:三对面上都有应力:三对面上都有应力平面应力状态和空间应力状态统称为平面应力状态和空间应力状态统称为4、主平面和主应力、主平面和主应力剪应力为零(剪应力为零(=0)的平面叫作)的平面叫作主平面上的正应力叫作主平面上的正应力叫作321,321.(3)空间应力状态:)空间应力状态:三个主应力都不等于零三个主应力都不等于零5、按主应力分类应力状态、按主应力分类应力状态(1)单向应力状态:)单向应力状态:三个主应力中只有一个不

4、为零三个主应力中只有一个不为零(2)平面应力状态:)平面应力状态:若三个主应力中有两个不为零若三个主应力中有两个不为零7-2 平面应力状态平面应力状态有一对面没有应力(假设前、后一对面没有),将单元体用有一对面没有应力(假设前、后一对面没有),将单元体用平平面图形面图形表示表示基准面:基准面:x面,面,y面面基准面上应力:基准面上应力:面:xxx,面:yyy,计算时规定:计算时规定:正应力以拉应力为正,压应力为负正应力以拉应力为正,压应力为负切应力以使单元体顺时针转动为正。逆时针转动为负。切应力以使单元体顺时针转动为正。逆时针转动为负。图中应力正负?图中应力正负?取三角形单元建立静力平衡方程取

5、三角形单元建立静力平衡方程在单元体中截取一个斜面,斜面角度在单元体中截取一个斜面,斜面角度从从x轴开始轴开始逆时针转过的角度为正。反之为负逆时针转过的角度为正。反之为负取三角形单元建立静力平衡方程取三角形单元建立静力平衡方程0sin)sind(cos)sind(cos)cosd(sin)cosd(d0AAAAAnyyxx0cos)sind(sin)sind(sin)cosd(cos)cosd(d0AAAAAtyyxx0sin)sind(cos)sind(cos)cosd(sin)cosd(d0AAAAAnyyxx0cos)sind(sin)sind(sin)cosd(cos)cosd(d0AA

6、AAAtyyxxyx由切应力互等定理由切应力互等定理和三角关系式和三角关系式2222sincosxyxyx222cossinxyx2222sincosxyxyx222cossinxyx只要已知基准面上的应力只要已知基准面上的应力)(,yxyx由上式可以求出任意斜面由上式可以求出任意斜面的应力的应力也就是说,通过某点所有截面上的应力都可求。即知道一也就是说,通过某点所有截面上的应力都可求。即知道一点处的点处的“应力状态应力状态”一单元体如图所示,试求在一单元体如图所示,试求在 =30 的斜截面上的的斜截面上的应力。应力。3020,20a3010,MPaMPa,MP,MPayxyxMPa.sinc

7、ossincosxyxyx32260206023010230102222MPa.cossincossinxyx331602060230102220dd令令2222sincosxyxyx222cossinxyx0222cossinxyx可见在可见在0的截面上,正应力具有极值(最大或者最小)的截面上,正应力具有极值(最大或者最小)1、最大正应力、最大正应力)(f当当满足上式时,正应力取极值,比较切应力公式满足上式时,正应力取极值,比较切应力公式因此,正应力极值(最大或最小)就是主应力因此,正应力极值(最大或最小)就是主应力两个主平面相互垂直,两个主平面相互垂直,因此,主应力也一定互因此,主应力也一

8、定互相垂直。相垂直。0222cossinxyxyxxtg 2200 o00902202042112xyxyxtgcos2200042222xyxxcostgsin由由正应力极值所在平面(主平面)也可由下式计算:正应力极值所在平面(主平面)也可由下式计算:2202042112xyxyxtgcos2200042222xyxxcostgsin2222sincosxyxyx22minmax22xyxyx 将将代入代入22minmax22xyxyx 231max 2、最大剪应力及其作用面222cossinxyx02sin22cos)(dd111xyyx令:令:01tg212tg2xyyx401yxxtg

9、 220主平面主平面可见最大与最小剪应力所在的平面与主平面的夹角可见最大与最小剪应力所在的平面与主平面的夹角为为45。1)最大剪应力作用面)最大剪应力作用面22minmax)2(xyx2)最大剪应力值)最大剪应力值22minmax22xyxyx 231max(1)求主应力的值)求主应力的值(压应力)(拉应力)2.4MPa-MPa4.4220230102301022MPa20,MPa30,MPa102222minmaxxyxyxxyxMPa4.204.42321 (a)试求例试求例7-1中所示单元体的主应力和最大剪应力。中所示单元体的主应力和最大剪应力。(2)确定主平面的位置)确定主平面的位置2

10、3010202220 yxxtg 431210(a)11330626318020另一个与其相差另一个与其相差90度(垂直)度(垂直)(2)求最大剪应力)求最大剪应力22minmax)2(xyxaMP4.2220)23010(22minmax231max由由由由aMP4.222)4.2(4.42maxMPa4.204.42321 最大与最小剪应力所在的平面与主平面的夹角为最大与最小剪应力所在的平面与主平面的夹角为45 三、应力状态的图解法三、应力状态的图解法莫尔应力圆莫尔应力圆2sin2cos22xyxyx2cos2sin2xyx22)2sin2cos2()2(xyxyx22)2cos2sin2

11、()0(xyx2222)2()0()2(xyxyx1、莫尔应力、莫尔应力圆圆2222)2()0()2(xyxyx2yx22)2(xyx这是一个圆心在这是一个圆心在)0,(2yx半径为半径为22)2(xyx的圆的圆2、莫尔应力圆做法、莫尔应力圆做法1)按比例建立应力坐标系)按比例建立应力坐标系2)在坐标系中,以)在坐标系中,以x面上的应力做一个点面上的应力做一个点3)再以再以y面上的应力做一个点面上的应力做一个点4)直线连接两点交于直线连接两点交于0点,以点,以0为圆心,为圆心,以以0A(或(或0B)为半径做圆为半径做圆3、莫尔应力圆应用、莫尔应力圆应用1)求)求30度斜面上的应力度斜面上的应力

12、2)求主应力、最大切应力)求主应力、最大切应力000045135yxxtg22022minmax22xyxyx xminxmax31x13135四、几种特殊应力状态四、几种特殊应力状态2cos2cos222sin2cos222xyxyx2sin22cos2sin2xyx7-3 7-3 空间应力状态空间应力状态三个主应力均不为零三个主应力均不为零(三对面上都有应力)(三对面上都有应力)2,31max3min1maxEE横向应变或纵向应变单向应力状态下E:有三个主应力有三个主应力321,EE21211111 应变引起的线段由应变引起的线段由E3131 应变引起的线段由沿主应力沿主应力 1的方向的总

13、应变为:的方向的总应变为:1111 32111E213313223211111EEE同理:同理:7-4 材料的破坏形式材料的破坏形式1、材料破坏的基本形式材料破坏的基本形式低碳钢拉伸:塑性屈服低碳钢拉伸:塑性屈服铸铁压缩:塑性屈服铸铁压缩:塑性屈服铸铁扭转:脆性断裂铸铁扭转:脆性断裂铸铁拉伸:脆性断裂铸铁拉伸:脆性断裂一般而言:一般而言:塑性材料多为塑性屈服破坏塑性材料多为塑性屈服破坏脆性材料多为脆性断裂破坏脆性材料多为脆性断裂破坏材料受力后是否破坏,取决于材料的应力是否超过材料较材料受力后是否破坏,取决于材料的应力是否超过材料较弱的那种弱的那种“极限抗力极限抗力”脆性材料的极限抗力:脆性材料

14、的极限抗力:压缩极限抗力压缩极限抗力剪切极限抗力剪切极限抗力拉伸极限抗力拉伸极限抗力铸铁扭转:沿铸铁扭转:沿45度方向拉力最大。沿度方向拉力最大。沿45度方向拉伸破坏度方向拉伸破坏铸铁拉伸:脆性拉伸断裂破坏铸铁拉伸:脆性拉伸断裂破坏塑性材料的极限抗力:塑性材料的极限抗力:压缩极限抗力压缩极限抗力=拉伸极限抗力拉伸极限抗力剪切极限抗力剪切极限抗力低碳钢拉伸:塑性屈服低碳钢拉伸:塑性屈服,沿沿45度方向出现滑移线度方向出现滑移线塑性屈服破坏多为剪切破坏塑性屈服破坏多为剪切破坏脆性断裂破坏多为拉伸破坏脆性断裂破坏多为拉伸破坏2、应力状态对破坏形式的影响、应力状态对破坏形式的影响1)压缩应力本身不会引

15、起材料破坏)压缩应力本身不会引起材料破坏2)拉应力多造成材料脆性断裂破坏)拉应力多造成材料脆性断裂破坏3)切应力多造成材料塑性屈服破坏)切应力多造成材料塑性屈服破坏4)三向压缩,脆性材料一般也会发生塑性屈服破坏)三向压缩,脆性材料一般也会发生塑性屈服破坏(三向等压,不管压力多大,都不会造成破坏)(三向等压,不管压力多大,都不会造成破坏)5)塑性材料在三向拉伸时也会发生脆性破坏)塑性材料在三向拉伸时也会发生脆性破坏7-5 7-5 强度理论强度理论对于单向应力状态,比如轴向拉压,其强度条件为:对于单向应力状态,比如轴向拉压,其强度条件为:nAN0长期生产实践中,人们就材料破坏原因,提出某些假说,长

16、期生产实践中,人们就材料破坏原因,提出某些假说,称为强度理论。(常用的有称为强度理论。(常用的有4种)种)可以由实验确定可以由实验确定无法再由实验确定无法再由实验确定最大拉应力是引起材料断裂破坏的主要因素,最大拉应力是引起材料断裂破坏的主要因素,即认为无论是单向或复杂应力状态,第一主应即认为无论是单向或复杂应力状态,第一主应力是主要破坏因素力是主要破坏因素u1 1第一强度理论没有考虑第第一强度理论没有考虑第2、3主应力的影响主应力的影响u极限应力值,由简单拉伸确定极限应力值,由简单拉伸确定bub为材料拉伸强度极限为材料拉伸强度极限若考虑安全系数若考虑安全系数 nb最大伸长线应变是引起材料断裂破

17、坏的主要因最大伸长线应变是引起材料断裂破坏的主要因素,即认为无论是单向或复杂应力状态,素,即认为无论是单向或复杂应力状态,是是主要破坏因素主要破坏因素Eb01 nb321考虑第考虑第2、3主应主应力的影响力的影响1极限应变极限应变32111Eb321maxu231max222sin2045su2231s 31极限切应力由轴向拉伸实验确定极限切应力由轴向拉伸实验确定fufu221323222126161sfEEus21323222121 21323222121或:或:r213232221431332121121rrrrr塑性材料宜采用第三、第四强度理论塑性材料宜采用第三、第四强度理论脆性材料宜采

18、用第一、第二强度理论脆性材料宜采用第一、第二强度理论但是,无论是塑性材料还是脆性材料,在三向拉应力接近相等状但是,无论是塑性材料还是脆性材料,在三向拉应力接近相等状态下,都以断裂形式破坏,宜采用最大拉应力理论;在三向压应态下,都以断裂形式破坏,宜采用最大拉应力理论;在三向压应力接近相等状态下,都引起塑性变形,宜采用第三、第四强度理力接近相等状态下,都引起塑性变形,宜采用第三、第四强度理论论 nnr0式中:式中:n-构件的工作安全系数;构件的工作安全系数;n-构件的许用安全系数;构件的许用安全系数;0-材料的材料的极限应力;极限应力;r-相当应力;相当应力;强度条件用于纯剪切许用应力确定强度条件

19、用于纯剪切许用应力确定321,0,纯剪切应用第一强度理论时:纯剪切应用第一强度理论时:1纯剪切强度条件纯剪切强度条件为许用剪应力为许用剪应力因为强度理论可以用于任何应力状态因为强度理论可以用于任何应力状态1纯剪切应用第二强度理论时:纯剪切应用第二强度理论时:32111112纯剪切时纯剪切时?1321,0,31纯剪切应用第三强度理论时:纯剪切应用第三强度理论时:321,0,221213 21323222121纯剪切应用第四强度理论时:纯剪切应用第四强度理论时:321,0,2220021 36212 31314(1)通过受力分析确定构件的外力、内力、危险截面。)通过受力分析确定构件的外力、内力、危

20、险截面。(2)通过应力分析确定危险截面上的危险点。)通过应力分析确定危险截面上的危险点。(3)从构件的危险点处截取单元体,计算主应力。)从构件的危险点处截取单元体,计算主应力。(4)选用适当的强度理论计算相当应力)选用适当的强度理论计算相当应力 r(5)确定材料的许用拉应力)确定材料的许用拉应力 ,将其与,将其与 r比较。比较。薄壁容器的强度计算薄壁容器的强度计算由横向截面上的静力平衡条件由横向截面上的静力平衡条件由纵向截面上的静力平衡条件由纵向截面上的静力平衡条件04022DpDX0201lDplY42pD21pD 21pD 42pD 032313pDr43)()()(21213232221

21、4pDr 已知一容器内压已知一容器内压 p=4MPa,平均直径平均直径D=1500mm,壁,壁厚厚 =30mm、=120MPa,试校核筒壁的强度。试校核筒壁的强度。MPa8703.045.1343MPa10003.025.14243pDpDeqeqMPaxxxminmax14-1144021002100222222MPaMPaMPa14,114,140321从某构件的危险点处取出一单元体如图从某构件的危险点处取出一单元体如图7-8a 所示,已知钢所示,已知钢材的屈服点材的屈服点 s=280MPa.试按最大剪应力理论和形状改变比能试按最大剪应力理论和形状改变比能理论计算构件的工作安全系数。理论计算构件的工作安全系数。82.1154280MPa154)14(14033313rsrn95.1143280MPa14321442132322214rsrn

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(材料力学第七章应力状态及强度理论课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|