1、2019年山东省潍坊市中考数学试卷参考答案与试题解析一、选择题(本大题共12小题,共36分。在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,错选、不选或选出的答案超过一个均记0分)1(3分)2019的倒数的相反数是()A2019BCD2019【解答】解:2019的倒数是,再求的相反数为;故选:B2(3分)下列运算正确的是()A3a2a6aBa8a4a2C3(a1)33aD(a3)2a9【解答】解:A、3a2a6a2,故本选项错误;B、a8a4a4,故本选项错误;C、3(a1)33a,正确;D、(a3)2a6,故本选项错误故选:C3(3分)“十三五”以来,我国
2、启动实施了农村饮水安全巩固提升工程截止去年9月底,各地已累计完成投资1.0021011元数据1.0021011可以表示为()A10.02亿B100.2亿C1002亿D10020亿【解答】解:1.00210111 002 000 000 001002亿故选:C4(3分)如图是由10个同样大小的小正方体摆成的几何体将小正方体移走后,则关于新几何体的三视图描述正确的是()A俯视图不变,左视图不变B主视图改变,左视图改变C俯视图不变,主视图不变D主视图改变,俯视图改变【解答】解:将正方体移走后,新几何体的三视图与原几何体的三视图相比,俯视图和左视图没有发生改变;故选:A5(3分)利用教材中的计算器依次
3、按键下:则计算器显示的结果与下列各数中最接近的一个是()A2.5B2.6C2.8D2.9【解答】解:2.646,与最接近的是2.6,故选:B6(3分)下列因式分解正确的是()A3ax26ax3(ax22ax)Bx2+y2(x+y)(xy)Ca2+2ab4b2(a+2b)2Dax2+2axaa(x1)2【解答】解:A、3ax26ax3ax(x2),故此选项错误;B、x2+y2,无法分解因式,故此选项错误;C、a2+2ab4b2,无法分解因式,故此选项错误;D、ax2+2axaa(x1)2,正确故选:D7(3分)小莹同学10个周综合素质评价成绩统计如下:成绩(分)94959798100周数(个)1
4、2241这10个周的综合素质评价成绩的中位数和方差分别是()A97.5 2.8B97.5 3C97 2.8D97 3【解答】解:这10个周的综合素质评价成绩的中位数是97.5(分),平均成绩为(94+952+972+984+100)97(分),这组数据的方差为(9497)2+(9597)22+(9797)22+(9897)24+(10097)23(分2),故选:B8(3分)如图,已知AOB按照以下步骤作图:以点O为圆心,以适当的长为半径作弧,分别交AOB的两边于C,D两点,连接CD分别以点C,D为圆心,以大于线段OC的长为半径作弧,两弧在AOB内交于点E,连接CE,DE连接OE交CD于点M下列
5、结论中错误的是()ACEODEOBCMMDCOCDECDDS四边形OCEDCDOE【解答】解:由作图步骤可得:OE是AOB的角平分线,CEODEO,CMMD,S四边形OCEDCDOE,但不能得出OCDECD,故选:C9(3分)如图,在矩形ABCD中,AB2,BC3,动点P沿折线BCD从点B开始运动到点D设运动的路程为x,ADP的面积为y,那么y与x之间的函数关系的图象大致是()ABCD【解答】解:由题意当0x3时,y3,当3x5时,y3(5x)x+故选:D10(3分)关于x的一元二次方程x2+2mx+m2+m0的两个实数根的平方和为12,则m的值为()Am2Bm3Cm3或m2Dm3或m2【解答
6、】解:设x1,x2是x2+2mx+m2+m0的两个实数根,4m0,m0,x1+x22m,x1x2m2+m,x12+x22(x1+x2)22x1x24m22m22m2m22m12,m3或m2;m2;故选:A11(3分)如图,四边形ABCD内接于O,AB为直径,ADCD,过点D作DEAB于点E,连接AC交DE于点F若sinCAB,DF5,则BC的长为()A8B10C12D16【解答】解:连接BD,如图,AB为直径,ADBACB90,ADCD,DACDCA,而DCAABD,DACABD,DEAB,ABD+BDE90,而ADE+BDE90,ABDADE,ADEDAC,FDFA5,在RtAEF中,sin
7、CAB,EF3,AE4,DE5+38,ADEDBE,AEDBED,ADEDBE,DE:BEAE:DE,即8:BE4:8,BE16,AB4+1620,在RtABC中,sinCAB,BC2012故选:C12(3分)抛物线yx2+bx+3的对称轴为直线x1若关于x的一元二次方程x2+bx+3t0(t为实数)在1x4的范围内有实数根,则t的取值范围是()A2t11Bt2C6t11D2t6【解答】解:yx2+bx+3的对称轴为直线x1,b2,yx22x+3,一元二次方程x2+bx+3t0的实数根可以看做yx22x+3与函数yt的有交点,方程在1x4的范围内有实数根,当x1时,y6;当x4时,y11;函数
8、yx22x+3在x1时有最小值2;2t11;故选:A二、填空题(本题共6小题,满分18分。只要求填写最后结果,每小题填对得3分。)13(3分)若2x3,2y5,则2x+y15【解答】解:2x3,2y5,2x+y2x2y3515故答案为:1514(3分)当直线y(22k)x+k3经过第二、三、四象限时,则k的取值范围是1k3【解答】解:y(22k)x+k3经过第二、三、四象限,22k0,k30,k1,k3,1k3;故答案为1k3;15(3分)如图,RtAOB中,AOB90,顶点A,B分别在反比例函数y(x0)与y(x0)的图象上,则tanBAO的值为【解答】解:过A作ACx轴,过B作BDx轴于D
9、,则BDOACO90,顶点A,B分别在反比例函数y(x0)与y(x0)的图象上,SBDO,SAOC,AOB90,BOD+DBOBOD+AOC90,DBOAOC,BDOOCA,()25,tanBAO,故答案为:16(3分)如图,在矩形ABCD中,AD2将A向内翻折,点A落在BC上,记为A,折痕为DE若将B沿EA向内翻折,点B恰好落在DE上,记为B,则AB【解答】解:四边形ABCD为矩形,ADCCB90,ABDC,由翻折知,AEDAED,ABEABE,ABEBABD90,AEDAED,AEBAEB,BEBE,AEDAEDAEB18060,ADE90AED30,ADE90AEB30,ADEADEAD
10、C30,又CABD90,DADA,DBADCA(AAS),DCDB,在RtAED中,ADE30,AD2,AE,设ABDCx,则BEBExAE2+AD2DE2,()2+22(x+x)2,解得,x1(负值舍去),x2,故答案为:17(3分)如图,直线yx+1与抛物线yx24x+5交于A,B两点,点P是y轴上的一个动点,当PAB的周长最小时,SPAB【解答】解:,解得,或,点A的坐标为(1,2),点B的坐标为(4,5),AB3,作点A关于y轴的对称点A,连接AB与y轴的交于P,则此时PAB的周长最小,点A的坐标为(1,2),点B的坐标为(4,5),设直线AB的函数解析式为ykx+b,得,直线AB的函
11、数解析式为yx+,当x0时,y,即点P的坐标为(0,),将x0代入直线yx+1中,得y1,直线yx+1与y轴的夹角是45,点P到直线AB的距离是:(1)sin45,PAB的面积是:,故答案为:18(3分)如图所示,在平面直角坐标系xOy中,一组同心圆的圆心为坐标原点O,它们的半径分别为1,2,3,按照“加1”依次递增;一组平行线,l0,l1,l2,l3,都与x轴垂直,相邻两直线的间距为1,其中l0与y轴重合若半径为2的圆与l1在第一象限内交于点P1,半径为3的圆与l2在第一象限内交于点P2,半径为n+1的圆与ln在第一象限内交于点Pn,则点Pn的坐标为(n,)(n为正整数)【解答】解:连接OP
12、1,OP2,OP3,l1、l2、l3与x轴分别交于A1、A2、A3,如图所示:在RtOA1P1中,OA11,OP12,A1P1,同理:A2P2,A3P3,P1的坐标为( 1,),P2的坐标为( 2,),P3的坐标为(3,),按照此规律可得点Pn的坐标是(n,),即(n,)故答案为:(n,)三、解答题(本题共7小题,共66分。解答应写出文字说明、证明过程或推演步骤。)19(5分)已知关于x,y的二元一次方程组的解满足xy,求k的取值范围【解答】解:得:xy5k,xy,xy05k0解得:k520(6分)自开展“全民健身运动”以来,喜欢户外步行健身的人越来越多,为方便群众步行健身,某地政府决定对一段
13、如图1所示的坡路进行改造如图2所示,改造前的斜坡AB200米,坡度为1:;将斜坡AB的高度AE降低AC20米后,斜坡AB改造为斜坡CD,其坡度为1:4求斜坡CD的长(结果保留根号)【解答】解:AEB90,AB200,坡度为1:,tanABE,ABE30,AEAB100,AC20,CE80,CED90,斜坡CD的坡度为1:4,即,解得,ED320,CD米,答:斜坡CD的长是米21(9分)如图所示,有一个可以自由转动的转盘,其盘面分为4等份,在每一等份分别标有对应的数字2,3,4,5小明打算自由转动转盘10次,现已经转动了8次,每一次停止后,小明将指针所指数字记录如下:次数第1次第2次第3次第4次
14、第5次第6次第7次第8次第9次第10次数字35233435(1)求前8次的指针所指数字的平均数(2)小明继续自由转动转盘2次,判断是否可能发生“这10次的指针所指数字的平均数不小于3.3,且不大于3.5”的结果?若有可能,计算发生此结果的概率,并写出计算过程;若不可能,说明理由(指针指向盘面等分线时为无效转次)【解答】解:(1)前8次的指针所指数字的平均数为(3+5+2+3+3+4+3+5)3.5;(2)这10次的指针所指数字的平均数不小于3.3,且不大于3.5,后两次指正所指数字和要满足不小于5且不大于7,画树状图如下:由树状图知共有16种等可能结果,其中符合条件的有9种结果,所以此结果的概
15、率为22(10分)如图,正方形ABCD的边CD在正方形ECGF的边CE上,连接DG,过点A作AHDG,交BG于点H连接HF,AF,其中AF交EC于点M(1)求证:AHF为等腰直角三角形(2)若AB3,EC5,求EM的长【解答】证明:(1)四边形ABCD,四边形ECGF都是正方形DABC,ADCD,FGCG,BCGF90ADBC,AHDG四边形AHGD是平行四边形AHDG,ADHGCDCDHG,ECGCGF90,FGCGDCGHGF(SAS)DGHF,HFGHGDAHHF,HGD+DGF90HFG+DGF90DGHF,且AHDGAHHF,且AHHFAHF为等腰直角三角形(2)AB3,EC5,AD
16、CD3,DE2,EF5ADEF,且DE2EM23(10分)扶贫工作小组对果农进行精准扶贫,帮助果农将一种有机生态水果拓宽了市场与去年相比,今年这种水果的产量增加了1000千克,每千克的平均批发价比去年降低了1元,批发销售总额比去年增加了20%(1)已知去年这种水果批发销售总额为10万元,求这种水果今年每千克的平均批发价是多少元?(2)某水果店从果农处直接批发,专营这种水果调查发现,若每千克的平均销售价为41元,则每天可售出300千克;若每千克的平均销售价每降低3元,每天可多卖出180千克,设水果店一天的利润为w元,当每千克的平均销售价为多少元时,该水果店一天的利润最大,最大利润是多少?(利润计
17、算时,其它费用忽略不计)【解答】解:(1)由题意,设这种水果今年每千克的平均批发价是x元,则去年的批发价为(x+1)元今年的批发销售总额为10(1+20%)12万元整理得x219x1200解得x24或x5(不合题意,舍去)故这种水果今年每千克的平均批发价是24元(2)设每千克的平均售价为m元,依题意由(1)知平均批发价为24元,则有w(m24)(180+300)60m2+4200m66240整理得w60(m35)2+7260a600抛物线开口向下当m35元时,w取最大值即每千克的平均销售价为35元时,该水果店一天的利润最大,最大利润是7260元24(13分)如图1,菱形ABCD的顶点A,D在直
18、线上,BAD60,以点A为旋转中心将菱形ABCD顺时针旋转(030),得到菱形ABCD,BC交对角线AC于点M,CD交直线l于点N,连接MN(1)当MNBD时,求的大小(2)如图2,对角线BD交AC于点H,交直线l与点G,延长CB交AB于点E,连接EH当HEB的周长为2时,求菱形ABCD的周长【解答】解:(1)四边形ABCD是菱形,ABBCCDAD,BADBCD60,ABD,BCD是等边三角形,MNBC,CMNCBD60,CNMCDB60,CMN是等边三角形,CMCN,MBND,ABMADN120,ABAD,ABMADN(SAS),BAMDAN,CADBAD30,DAD15,15(2)CBD6
19、0,EBG120,EAG60,EAG+EBG180,四边形EAGB四点共圆,AEBAGD,EABGAD,ABAD,AEBAGD(AAS),EBGD,AEAG,AHAH,HAEHAG,AHEAHG(SAS),EHGH,EHB的周长为2,EH+EB+HBBH+HG+GDBD2,ABAB2,菱形ABCD的周长为825(13分)如图,在平面直角坐标系xoy中,O为坐标原点,点A(4,0),点B(0,4),ABO的中线AC与y轴交于点C,且M经过O,A,C三点(1)求圆心M的坐标;(2)若直线AD与M相切于点A,交y轴于点D,求直线AD的函数表达式;(3)在过点B且以圆心M为顶点的抛物线上有一动点P,过
20、点P作PEy轴,交直线AD于点E若以PE为半径的P与直线AD相交于另一点F当EF4时,求点P的坐标【解答】解:(1)点B(0,4),则点C(0,2),点A(4,0),则点M(2,1);(2)P与直线AD,则CAD90,设:CAO,则CAOODAPEH,tanCAOtan,则sin,cos,AC,则CD10,则点D(0,8),将点A、D的坐标代入一次函数表达式:ymx+n并解得:直线AD的表达式为:y2x8;(3)抛物线的表达式为:ya(x2)2+1,将点B坐标代入上式并解得:a,故抛物线的表达式为:yx23x+4,过点P作PHEF,则EHEF2,cosPEH,解得:PE5,设点P(x,x23x+4),则点E(x,2x8),则PEx23x+42x+85,解得x或2,则点P(,)或(2,1)