新人教版11.3.2多边形的内角和课件.ppt

上传人(卖家):三亚风情 文档编号:3323583 上传时间:2022-08-20 格式:PPT 页数:27 大小:1.89MB
下载 相关 举报
新人教版11.3.2多边形的内角和课件.ppt_第1页
第1页 / 共27页
新人教版11.3.2多边形的内角和课件.ppt_第2页
第2页 / 共27页
新人教版11.3.2多边形的内角和课件.ppt_第3页
第3页 / 共27页
新人教版11.3.2多边形的内角和课件.ppt_第4页
第4页 / 共27页
新人教版11.3.2多边形的内角和课件.ppt_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、八年级八年级 上册上册11.3 多边形及其内角和多边形及其内角和 问题2:你知道长方形和正方形的内角和是多少吗?其他四边形的内角和是多少?问题1:你还记得三角形内角和是多少度吗?(三角形内角和 180)(都是360)想一想想一想ABCD问题3:在探究四边形的内角和时,有的同学不是用量角器度量、计算得到,而是 按照如图所示,利用辅助线将四边形分割成两个三角形的方法,利用三角形内角和等于180,得到四边形内角和等于360。你能说明它的合理性吗?并且启发你能否借助辅助线找到不同的分割方法呢?想一想想一想BACDE五边形内角和五边形内角和3 3180180540540学一学学一学四边形的内角和 (42

2、)180=360 五边形的内角和 (52)180=540 六边形的内角和 (62)180=720 七边形的内角 (72)180=900 B ACDGFEn n边形内角和边形内角和=(n=(n2)2)180180多边形多边形边数边数一个顶点一个顶点出发的对出发的对角线条数角线条数图形图形分成三角形分成三角形的个数的个数计算规律计算规律三边形三边形四边形四边形五边形五边形六边形六边形n边形边形3456n0n31231234n2(n2)1804 1803 1802 1801 180n边形内角和等于(n2)2.如果一个多边形的内角和是如果一个多边形的内角和是1440度,那么这是度,那么这是 边形。边形

3、。解:由多边形的内角和公式可得解:由多边形的内角和公式可得(n-2)180=1440 (n-2)=8 n=10这是十边形。这是十边形。十十3.已知一个多边形每个内角都等于 108,求这个多边形的边数?1、(抢答)8边形的内角和等于多少度?十边形呢?解:设这个多边形的边数为n,根据题意得:(n2)180=108n解得:n=5 答:这个多边形是五边形。 如果一个四边形的一组对角互补,那么另一组对如果一个四边形的一组对角互补,那么另一组对角有什么关系?角有什么关系?A A B BC CD D解:解:如图,四边形如图,四边形ABCD中,中,A+C=180A+C=180 A+B+C+D=(42)180

4、=360 因为因为 BD =360(AC)=360 180=180 这就是说:这就是说:如果四边形一组对角互补,那么另一组对如果四边形一组对角互补,那么另一组对角也互补角也互补所以所以 例例1:如果一个角的两边与另一个角的两边分别垂直,那么如果一个角的两边与另一个角的两边分别垂直,那么这两个角的关系是这两个角的关系是_相等或者互补相等或者互补1.十二边形的内角和是(十二边形的内角和是().2.一个多边形当边数增加一个多边形当边数增加1时,它的内角和增加时,它的内角和增加().3.一个多边形的内角和是一个多边形的内角和是720,则此多边形共有,则此多边形共有()个内角)个内角.4.如果一个多边形

5、的内角和是如果一个多边形的内角和是1440,那么这,那么这是(是()边形)边形.1800180六十十【例例】如图,在五边形的每个顶点处各取一个外角,如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和五边形的外角和这些外角的和叫做五边形的外角和五边形的外角和等于多少?等于多少?6E B CD1 2 3 4 5 A问题1我们知道,三角形的内角和是180,三 角形的外角和是360得出三角形的外角和是360有多种方法如图,你能说说怎样由外角与相邻内角 互补的关系得出这个结论吗?探索四边形、五边形、六边形的外角和探索四边形、五边形、六边形的外角和BCDEF123探索四边形、五边形、六

6、边形的外角和探索四边形、五边形、六边形的外角和由 1+BAE=180,2+CBF=180,3+ACD=180,得 1+2+3+BAE+CBF+ACD=540 由 1+2+3=180,得 BAE+CBF+ACD =540-180 =360BCDEF123问题2如图,你能仿照上面的方法求四边形的外 角和吗?探索四边形、五边形、六边形的外角和探索四边形、五边形、六边形的外角和BC123D4由由 BAD+1=180,ABC+2=180,BCD+3=180,ADC+4=180,得得BAD+1+ABC +2+BCD+3+ADC+4=1804由由BAD+ABC+BCD+ADC=1802,得得1+2+3+4=

7、1804-1802=360五边形外角和五边形外角和结论:五边形的外角和等于结论:五边形的外角和等于360.(52)180=360 6E BCD1 2 3 4 5 A=5个平角个平角 五边形内角和五边形内角和=5180【例例2】如图,在五边形的每个顶点处各取一个外角,如图,在五边形的每个顶点处各取一个外角,这些外角的和叫做五边形的外角和五边形的外角和这些外角的和叫做五边形的外角和五边形的外角和等于多少?等于多少? 例例2 如图,在六边形的每个顶点处各取如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外一个外角,这些外角的和叫做六边形的外角和六边形的外角和等于多少?角和六边形的外角

8、和等于多少?1 12 23 34 4A A B BC CD DE EF F5 56 6探究探究 在在n边形的每个顶点处各取一个外角,这些外角边形的每个顶点处各取一个外角,这些外角的和叫做的和叫做n边形的外角和边形的外角和n边形外角和边形外角和结论:结论:n边形的外角和等于边形的外角和等于360360.(n2)180=360 A1E BCD 2 3 4 5F n=n个平角个平角-n边形内角和边形内角和=n180 n边形外角和是多少度?探索探索n 边形的外角和边形的外角和我们也可以在问题我们也可以在问题4 的基础上这样理解多边形外角的基础上这样理解多边形外角 和等于和等于360如图,从多边形的一如

9、图,从多边形的一个顶点个顶点A 出发,沿多边形出发,沿多边形的各边走过各顶点,再回的各边走过各顶点,再回到点到点A,然后转向出发的,然后转向出发的方向方向A探索探索n 边形的外角和边形的外角和我们也可以在问题我们也可以在问题4 的基础上这样理解多边形外角的基础上这样理解多边形外角 和等于和等于360在行程中转过的各个在行程中转过的各个角的和,就是多边形的外角的和,就是多边形的外角和由于走了一周,所角和由于走了一周,所转过的各个角的和等于一转过的各个角的和等于一个周角,所以个周角,所以多边形外角多边形外角和等于和等于360A每个内角的度数是2180nn每个外角的度数是每个外角的度数是(1)若十二

10、边形的每个内角都相等若十二边形的每个内角都相等,那么每个内角那么每个内角是是_度度.(2)已知多边形的每个内角都是已知多边形的每个内角都是135度度,则这个多边则这个多边形是形是_.(3)如果某个多边形的内角和等于它的外角和如果某个多边形的内角和等于它的外角和,那那么这个多边形的边数是么这个多边形的边数是_.150八边形八边形四边形四边形练习练习2 2:已知一个多边形,它的内角和等于外已知一个多边形,它的内角和等于外角和的角和的2 2倍,求这个多边形的边数倍,求这个多边形的边数.解:解:设多边形的边数为设多边形的边数为n.它的内角和等于它的内角和等于(n2)180,多边形外角和等于多边形外角和

11、等于360,(n2)180=2 360.解得解得:n=6.这个多边形的边数为这个多边形的边数为6.今天的收获 1 1、n边形的内角和等于边形的内角和等于(n2 2)180180.3 3、利用类比归纳、转化的学习方法,可以、利用类比归纳、转化的学习方法,可以把多边形问题转化为三角形问题来解决把多边形问题转化为三角形问题来解决;外角外角问题转化为内角来解决问题转化为内角来解决.4 4、方程的数学思想在几何中有重要的作用、方程的数学思想在几何中有重要的作用.本节课你学会哪些知识?学会了哪些解决问题的方法?本节课你学会哪些知识?学会了哪些解决问题的方法?你还有哪些疑问?你还有哪些疑问?2 2、n边形的外角和等于边形的外角和等于360360.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公、行业 > 各类PPT课件(模板)
版权提示 | 免责声明

1,本文(新人教版11.3.2多边形的内角和课件.ppt)为本站会员(三亚风情)主动上传,163文库仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。
2,用户下载本文档,所消耗的文币(积分)将全额增加到上传者的账号。
3, 若此文所含内容侵犯了您的版权或隐私,请立即通知163文库(发送邮件至3464097650@qq.com或直接QQ联系客服),我们立即给予删除!


侵权处理QQ:3464097650--上传资料QQ:3464097650

【声明】本站为“文档C2C交易模式”,即用户上传的文档直接卖给(下载)用户,本站只是网络空间服务平台,本站所有原创文档下载所得归上传人所有,如您发现上传作品侵犯了您的版权,请立刻联系我们并提供证据,我们将在3个工作日内予以改正。


163文库-Www.163Wenku.Com |网站地图|